在一块 N x N 的棋盘 board 上,从棋盘的左下角开始,每一行交替方向,按从 1 到 N*N 的数字给方格编号。例如,对于一块 6 x 6 大小的棋盘,可以编号如下:
玩家从棋盘上的方格 1 (总是在最后一行、第一列)开始出发。
每一次从方格 x 起始的移动都由以下部分组成:
你选择一个目标方块 S,它的编号是 x+1,x+2,x+3,x+4,x+5,或者 x+6,只要这个数字 <= N*N。
如果 S 有一个蛇或梯子,你就移动到那个蛇或梯子的目的地。否则,你会移动到 S。
在 r 行 c 列上的方格里有 “蛇” 或 “梯子”;如果 board[r][c] != -1,那个蛇或梯子的目的地将会是 board[r][c]。
注意,你每次移动最多只能爬过蛇或梯子一次:就算目的地是另一条蛇或梯子的起点,你也不会继续移动。
返回达到方格 N*N 所需的最少移动次数,如果不可能,则返回 -1。
示例:
输入:[
[-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1],
[-1,35,-1,-1,13,-1],
[-1,-1,-1,-1,-1,-1],
[-1,15,-1,-1,-1,-1]]
输出:4
解释:
首先,从方格 1 [第 5 行,第 0 列] 开始。
你决定移动到方格 2,并必须爬过梯子移动到到方格 15。
然后你决定移动到方格 17 [第 3 行,第 5 列],必须爬过蛇到方格 13。
然后你决定移动到方格 14,且必须通过梯子移动到方格 35。
然后你决定移动到方格 36, 游戏结束。
可以证明你需要至少 4 次移动才能到达第 N*N 个方格,所以答案是 4。
提示:
2 <= board.length = board[0].length <= 20
board[i][j] 介于 1 和 N*N 之间或者等于 -1。
编号为 1 的方格上没有蛇或梯子。
编号为 N*N 的方格上没有蛇或梯子。
思 路 分 析 : \color{blue}思路分析: 思路分析:这道题一点都不难就是题意有点绕,让人很蒙圈。。。
首先来大致捋一捋题意,这道题要问我们从左下角(序号为1)的位置
(这个位置是固定的)怎么到达序号为target = size * size的位置。(注意size是方正的边长)由于序号是按照上面那张大图进行S型编号,所以终点target可能在左上角也可能在右上角
。
比如当n = 5时,编号为:target = 5 * 5 = 25在右上角。
21 22 23 24 25
20 19 18 17 16
11 12 13 14 15
10 9 8 7 6
1 2 3 4 5
假设我们把题意中的“梯子”、“蛇”统统认为是一个传送门,即可传送到这个传送门的终点。
对于board[i][j],如果board[i][j] == -1,说明这个位置没有传送门(“梯子”、“蛇”)。
否则board[i][j] != -1,我们进入这个点就会被传送门传送到序号为board[i][j]的位置(从[i][j]这个位置直接到达了board[i][j]这个序号所在的位置
)。
移动的规则:
我们每次移动只能移动到序号为x + i(1 <= i <= 6,并且x + i <= target
)的位置,其中x为当前所在的序号,
如果序号x + i所在的borad是一个传送门,则我们会被动传送到传送门的终点所在的位置,并且停在传送门的终点位置,哪怕当前传送门的终点是另外一个传送门的终点。
看到这里,你可能还是有点蒙,现在来分析一下示例就恍然大悟了。
首先我们在左下角序号x = 1的位置(row = 5,col = 0)
第一次移动:
我们选择i = 1,到达X = x + i = 2
,根据第一