机器学习种类

1.机器学习定义

  1. 机器学习是一门可以让编程计算机从数据中学习的计算机科学。
  2. 机器学习研究如何让计算机不需要明确的程序也能具备学习能力。
  3. 一个计算机程序在完成任务T后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P,随着E的增加而增加,可以称其为学习。

2.机器学习的作用

  1. 能够自动的学习一些规则,而不需要人为的给程序设置,有利于系统的维护。
  2. 对于未知的算法问题,可以自动寻找解决方案。
  3. 可以揭示一些人类未曾了解的性质。

3.机器学习的种类

    按照是否在人类监督下学习可以分为:监督式学习、无监督式学习、半监督式学习、强化学习。

    按照是否可以动态地进行增量学习可以分为:在线学习、批量学习。

    其它:基于实例的学习、基于模型的学习。

    上面的三种种类可以相互的组合,如监督式的基于模型的在线学习。

4.监督式学习

4.1监督式学习定义:

  1. 百度百科解释:可以由训练资料中学到或建立一个模式函数 / learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。
  2. 作者的理解:输入(向量组X,结果Y)先建立模型,然后把向量组带入到模型中得到结果Y1,比较Y1和Y的值得到损失函数,如果损失函数比较好,就说明这个模型在训练集上比较好。也就是说,监督式学习的输入一定有现实的结果。比如说房价与平方米的关系,有一个一百平米的输入,一定也会后对应的价格的输入。在得到一个好的模型后,输入向量组X,我们可以预测它可能的结果。

4.2监督式学习种类:分类、回归

       分类定义:根据输入判断属于哪种类型,比如说根据宝可梦的攻击力、防御力、HP判断这个宝可梦的属性(李宏毅老师的课程真的有意思)

       回归:根据输入预测输出的结果(一般而言是一个数值),比如说根据宝可梦的种族值、当前的HP判断宝可梦升级后的HP。

 

4.3常见的监督式学习算法

       1.K-近邻算法(K-Nearst Neighbors)

       2.线性回归算法(Linear Regression)

       3.逻辑回归算法(Logistic Regression)

       4.支持向量机(Support Vector Machine)

       5.决策树和随机森林(Decision Trees and Random Frrests)

       6.神经网络(Neural networks)

 

5.无监督式学习

5.1无监督式学习的定义:

    1.百度百科定义:无监督式学习在学习时并不知道其分类结果是否正确,亦不知道何种学习是正确的。其特点是仅提供输入样本,而它会自动从这些样本中找出其潜在类别规则。当学习完毕并经测试后,也可以将之应用到新的案例上。

    2.作者的理解:在给数据的时候没有给出准确的结果作为训练,系统会根据输入的数据进行相关操作。无监督学习一般用于聚类和降维。

5.2无监督式学习的算法

    聚类算法:K-平均算法(K-means)、分层聚类算法(Hierarchical Cluster Analysis)、最大期望算法(Exception Maximization)

    可视化和降维算法:主成分分析(PCA)、核主成分分析(Kernel PCA)、局部线性嵌入(LLE)、t-分布随机近临嵌入。

    关联规则学习:Apriori、Eclat。

 

6.半监督式学习

6.1半监督式学习的定义

    1. 百度百科定义:半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习和无监督式学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性。

    2.个人理解:所给的数据中,一大部分是没有结果的,而一小部分是有对应的结果的。

6.2半监督式学习的算法

    深度信念网络(DBN)

7.强化学习

7.1强化学习定义

    1.百度百科:强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。

    个人理解:在学习的过程中机器每做出一个抉择就会得到对应的奖励或者惩罚,机器要在数据中学习什么样的策略才能获得最高的奖励。

8.批量学习与在线学习

8.1批量学习的定义:

    必须使用所有可用数据进行训练,先训练系统,再将其投入生产,在生产时就无法学习。

8.2在线学习的定义:

    系统可以一边学习一边应用,或者有空了就给系统一些数据让系统学习。

9基于实例学习和基于模型学习

8.1基于实例学习的定义:系统会先记住学习实例,再通过某种相似度度量方法进行泛化到新的实例

8.2基于模型学习的定义:构造一组模型,基于这个模型来进行预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值