gMSA相关知识学习

gMSA是Windows 2012引入的一种安全特性,它是一种服务账户密码,每30天自动更换。攻击者如果能访问msDS-ManagedPassword属性或持有KDS根密钥,就能读取gMSA密码,从而威胁到系统安全。这种机制常被用作权限维持的方式,了解其工作原理和潜在风险对于网络安全至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是gMSA?

gMSA就是windows2012后面新增加的一个安全机制,是一个服务账户的密码,每台机器上都有,可以通过kdc去获取也可以在目标机器上直接读取,特点是30天更换一次

2. 读取gMSA需要的条件

  1. 如果攻击者拥有访问指定账户msDS-ManagedPassword属性的权限,则攻击者可以读取目标的gMSA 密码,也就是目标服务密码。
    域管与机器账户自己还有那台机器上的管理员账户有这个权限。

  2. 攻击者如果拥有KDS根密钥,就可以读取任意用户的gMSA密码,这个kds 根密钥有点类似于krbtgt的效果。默认域管理员有。

读取到服务密码可以理解成拥有了指定机器的机器账户密码,后续攻击思路都是针对如何利用服务密码而展开的。

综上,这是一种权限维持的方式。

3. 参考文章

https://www.semperis.com/blog/golden-gmsa-attack/

<think>好的,我现在需要回答用户关于Restormer中块特征提取的实现与原理的问题。首先,用户提到了DAF-Net的基础部分使用了Restormer来捕捉全局结构信息,并且引用了引用[3]。我需要结合这些信息来构建答案。 首先,我需要回忆一下Restormer的相关知识。Restormer是一种基于Transformer的图像恢复模型,主要用于去噪、超分辨率等任务。传统的Transformer在图像处理中通常面临计算复杂度高的问题,尤其是在处理高分辨率图像时,因为自注意力机制的计算量随像素数量平方增长。因此,Restormer需要在这方面进行优化。 用户提到的块特征提取,可能指的是Restormer中的模块设计,比如如何分块处理图像特征,或者如何提取局部和全局特征。根据引用[3],Restormer在DAF-Net中用于捕捉全局结构信息,而细节部分用可逆神经网络处理。这说明Restormer在特征提取时可能更关注长距离依赖和全局上下文。 接下来,我需要查阅引用[3]中的描述:“DAF-Net的基础部分使用了一种叫做Restormer的网络,专门用来捕捉全局的结构信息;而细节部分则基于可逆神经网络(INN),负责提取图像中的细节纹理。MK-MMD只在基础部分使用,以确保整体特征的一致性,避免对局部细节过于调节,这样可以保护模态特有的信息。” 这里提到Restormer负责全局结构,而INN处理细节,因此Restormer的特征提取可能侧重于全局信息的整合。 然后,我需要考虑Restormer中的关键组件。通常,Transformer块包括多头自注意力(MSA)和前馈网络(FFN)。但Restormer可能进行了改进,比如使用更高效的自注意力机制,或者分块处理来降低计算量。例如,引用[2]提到分组多尺度自注意力(GMSA),将特征分组并计算不同窗口大小的注意力,这可能与Restormer的设计有关联,但需要确认。 另外,引用[2]中还提到使用移位卷积(shift-conv)来提取局部特征,这可能与Restormer中的局部特征提取部分结合使用。但根据引用[3],Restormer主要负责全局结构,可能其块特征提取结合了局部和全局的注意力机制。 可能的实现原理包括: 1. 分块处理:将图像分成小块(patches),在块内或跨块应用自注意力。 2. 高效的自注意力机制:如使用窗口注意力、轴向注意力或减少键值对的维度。 3. 多尺度特征融合:在不同层次或不同分组中提取特征,如GMSA。 4. 结合卷积操作:如shift-conv来增强局部特征提取,同时利用自注意力处理全局依赖。 需要进一步分析Restormer的具体结构。根据引用[3],Restormer可能采用了Transformer的变体,例如使用分层结构,或在自注意力中引入某种形式的局部性约束,以平衡计算效率和全局感知能力。例如,可能将图像划分为多个不重叠的块,在每个块内进行自注意力计算,同时跨块进行信息交互,或者使用重叠的块来增加感受野。 此外,Restormer可能采用了通道注意力或空间注意力的结合,以增强特征的表征能力。例如,在多头自注意力中,不同头关注不同尺度的特征,或者引入动态权重调整机制,根据输入特征动态调整注意力权重。 在实现细节方面,可能包括: - 输入特征的分块处理,将图像划分为多个块,每个块作为Transformer的输入序列元素。 - 使用相对位置编码,以保持位置信息,这对于图像处理至关重要。 - 前馈网络中使用深度可分离卷积或其他高效操作,以减少参数量和计算量。 - 可能的跨块信息交互机制,如使用交叉注意力或在多个块之间进行特征聚合。 需要注意的是,Restormer可能针对图像恢复任务进行了优化,例如通过多阶段处理,逐步细化特征,或在不同的网络阶段调整块的大小和注意力机制的应用范围。例如,在浅层使用局部注意力,深层使用全局注意力,以兼顾细节和整体结构。 总结来说,Restormer的块特征提取原理可能包括分块处理、高效自注意力机制设计、局部与全局特征融合,以及结合卷积操作增强局部特征。具体实现可能涉及分块后的自注意力计算、位置编码、多尺度分组注意力等策略,以在降低计算复杂度的同时有效捕捉全局结构信息。</think>### Restormer中的块特征提取实现与原理 Restormer是一种基于Transformer架构的图像恢复模型,其核心设计目标是通过改进自注意力机制和多尺度特征提取来实现高效的全局信息建模[^3]。以下是其块特征提取的关键实现原理: #### 1. **分块多头自注意力(Block-based MSA)** - **分块策略**:将输入特征图划分为不重叠的局部块(如$8 \times 8$),在每个块内独立计算自注意力。这一策略显著降低了计算复杂度,从$O(H^2W^2)$降至$O(N \cdot B^2)$,其中$B$为块大小,$N$为块数量[^2]。 - **跨块信息交互**:通过堆叠多个块处理层,结合跳跃连接(skip connection),逐步融合不同块间的上下文信息,增强全局感知能力。 #### 2. **多尺度特征分组(GMSA)** - **分组多尺度机制**:将特征通道分组,每组分配不同窗口大小的注意力范围(如$4 \times 4$和$8 \times 8$)。例如,特征分组公式为: $$F_{\text{group}} = [F_1^{s_1}, F_2^{s_2}, ..., F_k^{s_k}]$$ 其中$s_i$为第$i$组的窗口大小,通过并行计算实现多尺度特征融合[^2]。 - **共享注意力加速**:在连续GMSA模块中复用部分注意力权重,减少重复计算,提升效率。 #### 3. **局部-全局特征融合** - **Shift-Conv增强局部性**:在自注意力前插入移位卷积(Shift-Conv),通过特征通道的循环位移扩大感受野。例如,对输入特征$X$进行移位操作: $$X_{\text{shift}} = \text{Shift}(X, \Delta x, \Delta y)$$ 再通过$1 \times 1$卷积提取局部结构信息,复杂度与标准卷积相同但效果更优[^2]。 - **残差学习结构**:每个块由“Shift-Conv + GMSA + FFN”构成,通过残差连接保留低频信息,公式为: $$X_{\text{out}} = X_{\text{in}} + \text{FFN}(\text{GMSA}(\text{Shift-Conv}(X_{\text{in}})))$$ #### 4. **动态参数调整** - **退化感知调制**:通过超网络动态生成块内的权重参数,使模型根据输入退化类型(如噪声、模糊)自适应调整特征提取策略[^1]。例如,生成缩放因子$\gamma$和偏置$\beta$: $$\gamma, \beta = \text{HyperNet}(F_{\text{weather}})$$ 用于调整卷积或注意力层的输出。 #### 代码片段示意(简化版) ```python class RestormerBlock(nn.Module): def __init__(self, dim, num_heads, window_size=8): super().__init__() # Shift-Conv局部特征增强 self.shift_conv = ShiftConv(dim) # 分组多尺度自注意力 self.gmsa = GMSA(dim, num_heads, window_sizes=[4,8]) # 前馈网络(含深度卷积) self.ffn = FFN(dim) def forward(self, x): x = x + self.shift_conv(x) # 残差连接 x = x + self.gmsa(x) # 多尺度注意力 x = x + self.ffn(x) # 特征细化 return x ``` ### 总结 Restormer通过分块自注意力降低计算复杂度,结合Shift-Conv增强局部特征,利用多尺度分组策略平衡感受野与灵活性,并通过动态调制实现退化感知的恢复能力。这种设计在DAF-Net中被用于提取全局结构,同时避免了细节信息的过度平滑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shanfenglan7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值