最大公约数算法以及c++实现

问题引入

求42与49的最大公约数。

更相减损法

算法过程:
将两个数中的较大值减去较小值替代较大值,反复如此直到相等。
42 49
42 7
35 7
28 7
21 7
14 7
7 7
其意义很容易明白,首先两个正整数a,b之间肯定存在一个最大公约数r,如果a>b,那么(a-b)与b之间的最大公约数也一定是r,反之亦然,最终迭代到两个数相等即为最大公约数。

辗转相除法

辗转相除法是更相减损法的改进,还是求42与49的最大公约数,在求到42,7之后发现需要不断地减去7,实际上就是减去42%7-1个7而已。其意义与上面一样,不言自明。
那么辗转相除法可以表述为:
两个数a、b,其中a>b,a/b=c…r1。
变为两个数b、r1,b/r1=c…r2。

r(i)、r(i+1),r(i)/r(i+1)=c…r(i+2)

直到两个数相等为止。

c++代码

#include<iostream>
#include<algorithm>
using namespace std;
//更相减损法 
int gcd1(int a,int b){
	while(a!=b){
		if(a>b){
			a=a-b;
		}else{
			b=b-a;
		}
	}
	return a;
}
//辗转相除法
int gcd2(int a,int b){
	int tmp;
	if(a<b){
		tmp=a;
		a=b;
		b=tmp;
	}
	while(b!=0){
		//只需要a永远大于b即可 
		tmp=b;
		b=a%b;
		a=tmp;
	}
	return a;
} 

int main(){
	int a=42,b=49;
	cout<<gcd1(a,b)<<endl;
	cout<<gcd2(a,b)<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值