问题引入
求42与49的最大公约数。
更相减损法
算法过程:
将两个数中的较大值减去较小值替代较大值,反复如此直到相等。
42 49
42 7
35 7
28 7
21 7
14 7
7 7
其意义很容易明白,首先两个正整数a,b之间肯定存在一个最大公约数r,如果a>b,那么(a-b)与b之间的最大公约数也一定是r,反之亦然,最终迭代到两个数相等即为最大公约数。
辗转相除法
辗转相除法是更相减损法的改进,还是求42与49的最大公约数,在求到42,7之后发现需要不断地减去7,实际上就是减去42%7-1个7而已。其意义与上面一样,不言自明。
那么辗转相除法可以表述为:
两个数a、b,其中a>b,a/b=c…r1。
变为两个数b、r1,b/r1=c…r2。
…
r(i)、r(i+1),r(i)/r(i+1)=c…r(i+2)
…
直到两个数相等为止。
c++代码
#include<iostream>
#include<algorithm>
using namespace std;
//更相减损法
int gcd1(int a,int b){
while(a!=b){
if(a>b){
a=a-b;
}else{
b=b-a;
}
}
return a;
}
//辗转相除法
int gcd2(int a,int b){
int tmp;
if(a<b){
tmp=a;
a=b;
b=tmp;
}
while(b!=0){
//只需要a永远大于b即可
tmp=b;
b=a%b;
a=tmp;
}
return a;
}
int main(){
int a=42,b=49;
cout<<gcd1(a,b)<<endl;
cout<<gcd2(a,b)<<endl;
}