第六周学习总结

第六周学习总结


PyTorch:本周继续学习了基本操作,包括tensor的合并与分割、数学运算、属性统计等;另外复习了随机梯度下降算法,并通过一个demo实现了自动求梯度和反向传播;此外还实现了一个2D函数的模型构建与优化。
PyTorch自用笔记(第三周-进阶篇)
计算机视觉:本周学习了一些CNN框架,包括LeNet-5、AlexNet、VGGNet、GoogLeNet、ResNet、DenseNet等,了解了主流框架的基本结构和主要特点。 李飞飞计算机视觉-自用笔记(第四周)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值