基于conda安装pytorch---一看就会超稳定安装步骤详解【多次踩坑实践最终成功版!!!】【适用于WIN系统】

在进行深度学习和机器学习项目开发时,PyTorch 是一个非常流行的深度学习框架之一,然而,在windows下安装 PyTorch 可能会出现各种各样的问题(我之前以为和linux下一样很简答,现实哐哐教育!!,菜,还是要多练!!!)。在这篇博客中,我将分享我在Windows 环境下使用 Conda 安装 PyTorch 的经历。我曾遇到过多次失败,不断尝试更换镜像源,经历了许多挫折,但最终找到了成功的方法。希望我的经验能帮助到那些在安装 PyTorch 上遇到困难的开发者。

步骤 1:准备工作

首先,确保您已经正确安装了 Anaconda 或 Miniconda,并且系统环境变量已经配置好,可通过Anconda Prompt通过conda命令进行查看
在这里插入图片描述

步骤 2:创建Conda环境

打开 Anaconda Prompt 或者其他命令行工具,创建一个新的 Conda 环境,例如:

conda create -n py39 python=3.9

之后可通过命令查看conda目前创建的虚拟环境
在这里插入图片描述

步骤 3:激活虚拟环境

激活新创建的环境:

conda activate py39

即可进入所创建的虚拟环境中:
在这里插入图片描述

步骤4:安装PyTorch

官方链接如下:

https://pytorch.org/get-started/locally/

我们选择稳定版(Stable )windows 支持cuda11.8版本的的PyTorch
在这里插入图片描述
tips1:可根据自己电脑支持的cuda版本安装对应的PyTorch
可通过命令行输入nvidia-smi进行查看
在这里插入图片描述
tips2:显示的英伟达显卡驱动版本(博主PC显卡版本为4070,已安装驱动)与CUDA版本都是指的是最高支持版本
之后我们复制PyTorch官方安装名利即可安装:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

tips3:通过查阅资料了解到 -c pytorch指的是使用国外pytorch官方通道进行下载安装,使用国内源可去掉,但是我去掉了使用清华源镜像下载就出现了报错,我感觉新版链接应该是不可以去掉,后面比之前的多了个-c nvidia,这里分享一下信息仅供参考,如有换源成功的小伙伴们可在评论区留言!!!

步骤5:失败与尝试

基于之前安装软件包的经历,直接使用了清华镜像进行链接安装现在,于是,果不其然,就非常离谱,就是无尽的没反应,卡住…
在这里插入图片描述

在这里插入图片描述
我尝试过清华源、中科大源、阿里云源等,换了很多次,但都以失败告终,非常离谱,心态逐渐炸裂,我寻思安装一个PyTorch就把我难住了???我不服!!!

步骤6:尝试使用默认源

最终,我决定尝试使用默认的源进行安装下载
打开 Anaconda Prompt 或终端: 打开你的 Anaconda Prompt(如果你使用的是 Windows)或终端(如果你使用的是 macOS 或 Linux)
移除其他源: 运行以下命令来移除你之前添加的其他源,比如清华大学的源

conda config --remove-key channels

这将从 Conda 配置中移除所有自定义的频道设置。
验证设置是否生效: 运行以下命令检查 Conda 的频道配置:

conda config --show channels

可查看当前使用的镜像源
在这里插入图片描述
确保默认源已被正确添加
接下来进入虚拟环境进行安装:
在这里插入图片描述
终于 通过了 好像看到了黎明的曙光!!!

在这里插入图片描述
之后就是一路按照提示按住即可,使用默认源可能需要一段时间(但总算是进行了),可以摸会儿🐟🐟🐟
在这里插入图片描述
可能网络不稳定,有一个没有装上,没关系我们在执行一次命令即可
在这里插入图片描述
我们发现本次按照只安装了之前没有安装完成的一个包
进度跑完 ,我们进入python解释器查看Pytorch查看是否安装完成
在这里插入图片描述
完成了!!!

步骤7:总结

经过多次尝试和踩坑,最终博主成功地在 Windows 系统上使用 Conda 安装了 PyTorch。从这一经历中,我们可以得到几点经验教训:

  • 在安装 PyTorch 时,首先尝试使用默认的 Conda 源,因为它通常是最稳定可靠的。
    如果遇到安装失败的情况,不妨多尝试一些其他的 Conda 源,但也要注意选择官方认可和稳定的源。
  • 在安装过程中,耐心等待并仔细阅读错误信息,有助于找到解决问题的线索。
  • 总的来说,尽管安装 PyTorch可能会遇到一些困难,但通过不断尝试和学习,我们最终能够克服障碍,顺利完成任务。希望本文的经验分享能够帮助更多的初学者顺利安装PyTorch,并顺利进行深度学习项目的开发。

在技术的道路上,踩坑与收获同样重要。只有在不断探索和挑战中,我们才能不断成长,取得更大的进步。相信在今后的学习和实践中,我们将会遇到更多的困难和挑战,但只要保持耐心和勇气,最终都能够战胜困难,迎接成功的到来!!!

### 如何使用 Conda 安装 PyTorch 1.2.6 为了安装指定本的 PyTorch (例如 1.2.6),可以通过 `conda` 的命令行工具实现。以下是具体方法: #### 方法:直接通过 `conda install` 命令 可以直接运行以下命令来安装特定本的 PyTorch 和 CUDA 工具包: ```bash conda install pytorch=1.2.6 cudatoolkit=10.0 -c pytorch ``` 此命令会从 Anaconda Cloud 上的官方通道 `-c pytorch` 下载并安装 PyTorch 1.2.6 及其兼容的 CUDA Toolkit 本[^1]。 需要注意的是,PyTorch 不同本通常对应不同的 CUDA 本支持范围。如果需要其他 CUDA 本,则需调整 `cudatoolkit=` 参数中的数值。例如,CUDA 10.1 对应如下命令: ```bash conda install pytorch=1.2.6 cudatoolkit=10.1 -c pytorch ``` #### 方法二:创建新环境后再安装 为了避免污染现有环境,建议先创建个新的 Conda 环境再进行安装操作: ```bash conda create -n myenv python=3.7 conda activate myenv conda install pytorch=1.2.6 cudatoolkit=10.0 -c pytorch ``` 在此过程中,Python 本也需要与目标 PyTorch 本保持致。对于 PyTorch 1.2.6 来说,推荐使用的 Python 本为 3.6 或 3.7[^2]。 #### 验证安装成功与否 完成安装之后,可通过导入模块验证是否正常工作: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 上述脚本应该返回所期望的 PyTorch 本号以及 GPU 是否可用的信息。如果切顺利的话,输出应当类似于下面这样: ``` 1.2.6 True ``` #### 解决常见错误提示 有时可能会碰到些依赖冲突或者找不到软件包的情况。此时可以尝试清理缓存重试: ```bash conda clean --all conda update conda conda install pytorch=1.2.6 cudatoolkit=10.0 -c pytorch ``` 另外,当某些情况下无法找到合适的构建时,考虑切换至 pip 进行安装作为备选方案之[^3]。 --- ###
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值