使用sklearn库自带的数据集预测房价

本文将介绍如何利用Python的sklearn库分析并预测房价。通过实战操作,读者将掌握机器学习模型的训练过程。
摘要由CSDN通过智能技术生成

学习目标:

sklearn的加州数据集预测,回归,评价模型

学习产出:

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
#首先要加载数据
boston = load_boston()
boston_data = boston.data
boston_target = boston.target
names = boston.feature_names
print(boston.DESCR,end='\n')
print(boston.data[0,:])

#将数据集划分成为训练集和测试集
boston_train,boston_test
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值