插排和希尔排序
插入排序
public static void insertSort(int[] a){
int i,j,temp;
int n =a.length;
//遍历得到每一个临时值 temp
for( i=0;i<n-1;i++){
temp =a[i+1];
j =i;
// 如果临时值(也就是目标值的下一个数)比目标值小
while(j>-1&& temp<=a[j]){
//将目标值赋给下一个索引的位置
a[j+1]=a[j];
//目标索引自减 继续让新的目标值与临时值作比较
j--;
}
//将临时值付给目标值后面的索引
a[j+1]=temp;
}
}
希尔排序
```java
public static void shell(int arr[]){
//分组 最开始2个一组 后来4组....
for(int gap=arr.length/2;gap>0;gap/=2){
//从第gap元素开始 对分好组的元素进行插入排序
for(int i=gap;i<arr.length;i++){
int j=i;
int temp=arr[j];
//判断是否可以替换值,然后自减再进行判断
while(j-gap>=0 && temp<arr[j-gap]){
arr[j]=arr[j-gap];
j-=gap;
}
//将临时值赋给变化后的arr[j],如果没有发生替换则还是原值
arr[j]=temp;
}
}
}
分析插入排序和希尔排序
希尔排序其实有两种 一种交换式的,里面采用冒泡排序,效率非常非常慢,这里采用移位式,也就是里面采用
插入排序。
为什么在混乱度很高的数组中希尔排序(n(logn)* 2)可以比插入排序(n* 2)有效率,可以举个例子假设
一个数组最后一个元素是最小的,那它经过插入排序就要依次去和前面比较并交换。而如果是希尔排序 它第一次交换就到了中间的位置,交换次数大大减少,自然效率更快