设序列为a1,a2,a3...ai...an;
考虑ai时:
1.当ai大于0时,当前临时最大乘积(tmp_max)为a1...ai-1中最大的连续子序列乘积(ret_max)乘上ai,或为ai
2.当ai小于0时,当前临时最大乘积(tmp_max)为a1...ai-1中最小的连续子序列乘积(ret_min)乘上ai,或为ai
3.当ai小于0时,临时最大乘积清零
故保存连续子序列a1...ai-1的最大乘积和最小乘积,可以计算考虑ai时的临时最大乘积:
tmp_max = max(ret_max * ai, ret_min * ai, ai)
tmp_min = min(ret_max * ai, ret_min * ai, ai)
更新最终的最大乘积:
ret = max(ret, ret_max)
# coding=utf-8
"""
question:
有一个整数类型的列表 nums,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。
例:nums = [1, 2, -2, -1, 5, -4]
输出:20, 序列为:[-1, 5, -4]
"""
def max_sub_seq(nums):
if not nums:
return
# 设置初始值
ret_max = nums[0] # 保存迄今为止的序列最大乘积
ret_min = nums[0] # 保存迄今为止的序列最小乘积
ret = nums[0]
for num in nums[1:]:
# 计算包括当前元素的最大乘积
tmp_max = max(ret_max * num, ret_min * num, num)
# 计算包括当前元素的最小乘积(为负数准备)
tmp_min = min(ret_max * num, ret_min * num, num)
ret_max = tmp_max
ret_min = tmp_min
ret = max(ret, ret_max)
return ret
if __name__ == '__main__':
l = [2, -1, 4, -2, -3, 0, 1, 2]
print(max_sub_seq(l))