Python-最大子序列乘积

设序列为a1,a2,a3...ai...an;

考虑ai时:

1.当ai大于0时,当前临时最大乘积(tmp_max)为a1...ai-1中最大的连续子序列乘积(ret_max)乘上ai,或为ai

2.当ai小于0时,当前临时最大乘积(tmp_max)为a1...ai-1中最小的连续子序列乘积(ret_min)乘上ai,或为ai

3.当ai小于0时,临时最大乘积清零

故保存连续子序列a1...ai-1的最大乘积和最小乘积,可以计算考虑ai时的临时最大乘积:

tmp_max = max(ret_max * ai, ret_min * ai, ai)

tmp_min = min(ret_max * ai, ret_min * ai, ai)

更新最终的最大乘积:

ret = max(ret, ret_max)

# coding=utf-8

"""
question:
有一个整数类型的列表 nums,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数)。

例:nums = [1, 2, -2, -1, 5, -4]
输出:20, 序列为:[-1, 5, -4]
"""


def max_sub_seq(nums):
    if not nums:
        return

    # 设置初始值
    ret_max = nums[0]  # 保存迄今为止的序列最大乘积
    ret_min = nums[0]  # 保存迄今为止的序列最小乘积
    ret = nums[0]

    for num in nums[1:]:
        # 计算包括当前元素的最大乘积
        tmp_max = max(ret_max * num, ret_min * num, num)
        # 计算包括当前元素的最小乘积(为负数准备)
        tmp_min = min(ret_max * num, ret_min * num, num)

        ret_max = tmp_max
        ret_min = tmp_min

        ret = max(ret, ret_max)

    return ret


if __name__ == '__main__':
    l = [2, -1, 4, -2, -3, 0, 1, 2]
    print(max_sub_seq(l))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值