2018广东工业智造大数据创新大赛——智能算法赛 【数据集下载分享】

2018年广东工业智造大赛聚焦智能算法,解决铝型材表面瑕疵识别问题。比赛提供1万份实际生产中带有瑕疵的铝型材图像,目标是通过深度学习技术自动识别瑕疵类型和位置,提高质检效率。参赛者需依据提供的300张学习数据、3000张初赛数据和5000张复赛数据进行模型训练与优化,比赛以瑕疵识别准确率和效率为评估标准,最终选出优胜团队。
摘要由CSDN通过智能技术生成

  2018广东工业智造大数据创新大赛——智能算法赛


铝型材表面瑕疵识别

 

介绍:
铝型材是佛山南海的支柱性产业。在铝型材的实际生产过程中,由于各方面因素的影响,铝型材表面会产生裂纹、起皮、划伤等瑕疵,这些瑕疵会严重影响铝型材的质量。为保证产品质量,需要人工进行肉眼目测。然而,铝型材的表面自身会含有纹路,与瑕疵的区分度不高。传统人工肉眼检查十分费力,不能及时准确的判断出表面瑕疵,质检的效率难以把控。近年来,深度学习在图像识别等领域取得了突飞猛进的成果。铝型材制造商迫切希望采用最新的AI技术来革新现有质检流程,自动完成质检任务,减少漏检发生率,提高产品的质量,使铝型材产品的生产管理者彻底摆脱了无法全面掌握产品表面质量的状态。本次大赛选择南海铝型材标杆企业的真实痛点作为赛题场景,寻求解决方案,助力企业实现转型升级,提升行业竞争力。

数据源:
大赛数据集里有1万份来自实际生产中有瑕疵的铝型材监测影像数据,每个影像包含一个或多种瑕疵。供机器学习的样图会明确标识影像中所包含的瑕疵类型。

竞赛规则:
使用某企业某一产线某一时间段获取的铝型材图片,训练算法来定位瑕疵所在位置以及判断瑕疵的类型。
瑕疵的衡量标准如下:
1. 型材表面应整洁,不允许有裂纹、起皮、腐蚀和气泡等缺陷存在。
2. 型材表面上允许有轻微的压坑、碰伤、擦伤存在,其允许深度装饰面≯0.03mm,非装饰面>0.07mm,模具挤压痕深度≯0.03mm。
3. 型材端头允许有因锯切产生的局部变形,其纵向长度不应超过10mm。

4. 工业生产过程中,不够明显的瑕疵也会被作为无瑕疵图片进行处理,不必拘泥于无瑕疵图片中的不够明显的瑕疵。

5. 初赛图片结果为单标签,即一张图片只有一种瑕疵。“其他”文件夹中的瑕疵初赛不要求细分,但是统一划分为一类,即“其他”。

6. 复赛图片分成单瑕疵图片、多瑕疵图片以及无瑕疵图片:单瑕疵图片指所含瑕疵类型只有一种的图片,但图片中可能出现多处相同类型的瑕疵;多瑕疵图片指所含瑕疵类型多于一种的图片;无瑕疵图片指瑕疵可忽略不计的图片,这些图片不需要标注。
7. 图片采用矩形框进行标注,标注文件储存成json文件,采用utf-8的编码格式,可通过labelme标注工具直接打开。Labelme是一款开源标注工具,有关labelme和json文件格式的介绍请选手通过网络自行了解。

比赛规程:
1. 参考学习数据量:9月1日提供下载,300张图片,包含所有瑕疵的类型。用于参赛者设计图像识别算法和机器学习。
2. 初赛数据量:3000张图片,包含所有瑕疵的类型。参赛者可以将自己算法识别的结果上传系统,识别率高的前100支团队晋级。
3. 复赛数据量:5000张图片,包含所有瑕疵的类型。晋级复赛的参赛队伍在规定的时间内,通过算法自动识别照片中的瑕疵类型。综合计算识别张数、识别准确率、时长等因素计算出效率最高的6支队伍晋级决赛,参加在佛山南海举行的决赛答辩路演,产出最终获胜团队举行决赛颁奖。

4. 复赛训练数据于10月11日提供下载(md5: 387149fd95906365d1ed950eb687455a),4356张图片,包含单瑕疵图片,多瑕疵图片,无瑕疵图片,用于参赛者设计图像识别算法。图片所含瑕疵类型总计10种,分别为:不导电、擦花、角位漏底、桔皮、漏底、喷流、漆泡、起坑、杂色、脏点。

提交说明:
初赛:参赛者需要

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值