基于Rectified Flow FLUX的图像编辑方法 RF-Solver

Diffusion Models专栏文章汇总:入门与实战

前言:现在越来越多的开源模型是基于Rectified Flow,特别是FLUX和HunYuan Video,但是Rectified Flow inversion的性质和之前有所不同,这篇博客解读一下如何使用Rectified Flow对FLUX进行编辑。

目录

RF直接逆向会出现问题

为什RF直接逆向会出现问题?

论文核心贡献

什么是逆向操作?

RF-Solver

图片和视频编辑


RF直接逆向会出现问题

论文先放出了一张图,说直接逆向会有问题:

尽管在基本的T2I和T2V生成任务中取得了显著的成功,但很少有研究探讨基于RF的模型在各种下游任务中的表现。当直接应用原始RF进行逆向操作时,我们观察到它无法忠实地从源图像或视频中重建出目标。示例见图1中的任务1和任务2(第三行)。在图像逆向中,重建图像中物体(例如蛋糕)的位置和个体(例如儿童)的外观与源图像有显著差异。视频逆向的性能更差,重建视频中存在明显的失真。

逆向和重建的不准确性将严重限制RF模型在其他基于逆向的下游任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值