torch遇到的一系列问题

本文主要探讨了PyTorch版本升级导致的代码兼容性问题,如train_loss+=loss.data[0]在新版本中需要更改为train_loss+=loss.item()。此外,还指出训练数据输入值需为long类型的Tensor。解决方案包括使用loss.item()避免索引错误,以及将int值Tensor转换为long。同时,文章强调了正确处理训练样本数据类型的重要性。
摘要由CSDN通过智能技术生成

1.报错原因:train_loss += loss.data[0] 是pytorch0.3.1版本代码,在0.4-0.5版本的pytorch会出现警告,不会报错,但是0.5版本以上的pytorch就会报错,总的来说是版本更新问题

解决方法:

#将原语句:

train_loss+=loss.data[0]

#修改为:

train_loss+=loss.item()

2.原因分析:是具体的数字,不能加索引

解决方法:

原句:total_loss[0]/training_data.sents_size

改为:total_loss/training_data.sents_size

3.

错误分析:训练的批量样本数据输入值需要是long值的Tensor数据,而不是int值的Tensor数据.

解决:

后面加上long()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值