IEEE论文参考文献引用格式


了解一个期刊书写格式最快方法,请先进入该期刊官网,先下载几篇最近发表的论文,按照下载的论文格式对照改即可

格式要求

参考编号左对齐,并形成自己的一列,突出于参考的主体之外。 参考号在生产线上,用方括号括起来。

字体段落格式

推荐格式:Times news Roman ,8号字体
段落设置:两端对齐,悬挂0.63厘米,行距固定值9磅。缩进0,间距0;

期刊格式书写

顺序书写要求:

先写作者名字,再写文章名,再写期刊名,卷号,期号,页码和年份。
在这里插入图片描述

作者格式的书写

先写名,再写姓。如L. J. Wang
当作者很多时,一般只写前三个,其他使用et al. 进行省略
最后一个作者前面加and,如果后面有et al则不加.
可在谷歌学术镜像中查找,按照标红写即可。
在这里插入图片描述
但是谷歌学术的 抓取的作者简写格式有可能不对,这就需要我们点进去具体文章,查看作者详细姓名,自己进行缩写。
在这里插入图片描述

在这里插入图片描述

文章名的书写格式

一般用双引号即可

期刊名字简写

一般情况下,期刊名字是需要简写的,且需要使用斜体
链接: 简写网站.
https://woodward.library.ubc.ca/research-help/journal-abbreviations/
可以使用此链接的网站,输入期刊的全称寻找缩写。
在这里插入图片描述
但是大部分情况下,很难找到,

  1. 可以使用小木虫进行查询期刊的简称
  2. 可以将全程分解查询,例如
    Journal Of Intelligent Information Systems这个是查不到全称的。
    一般情况下,of and in等等都是直接省略掉
    只需查找 Journal Intelligent Information Systems的简称拼接起来即可
    如下查询到 Journal简称 J.
    Intelligent简写为 Intell.
    Information Systems 简写为 Inf. Syst.
    在这里插入图片描述
    所以Journal Of Intelligent Information Systems简称为 J. Intell. Inf. Syst. 与网上查询一致
    在这里插入图片描述

卷号,期号

卷号,期号等一般需要找到相应的论文。按照vol. ,no. ,pp. ,年份书写即可
添加链接描述在此链接可查大部分论文,或者可去谷歌学术镜像查,点击cite卷,期,页码都会有。
在这里插入图片描述

链接: link.
https://dblp.uni-trier.de/search?q=100235
在此网站可查询到大部分前几年发布的论文,如果查找不到,可找到对应的网站进行查找。
在这里插入图片描述
如果是此格式,只有卷号和一个六位数码,可将六位数码当作pp.使用。
例:vol. 117, pp. 105699, 2020.
没有正式出版的没有vol和页码,这时候要加doi。
在这里插入图片描述

会议格式

Abbreviate conference titles. 会议标题需要缩写。
在这里插入图片描述

专利

专利(Patent)When referencing a patent, provide the day and the month of issue, or application. References may not include all information; please obtain and include relevant information.
在这里插入图片描述

书籍

在这里插入图片描述

链接 URL

在这里插入图片描述

我很抱歉,作为一个AI模型,我无法直接阅读文献并提供详细的流程图或伪代码。我可以根据我已经了解的知识给您提供一些关于其他多目标进化算法的概述,并谈论它们的优点和不足。 1. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO): MOPSO算法基于粒子群优化算法,用于解决多目标优化问题。它使用粒子群的位置和速度更新规则来搜索帕累托最优解。该算法的优点是简单易实现,同时能够在较短时间内找到较好的帕累托最优解。然而,MOPSO算法在处理高维问题时可能面临收敛速度慢和解决方案的多样性不足的问题。 2. 多目标差分进化算法(Multi-objective Differential Evolution,MODE): MODE算法是一种基于差分进化算法的多目标优化方法。它使用差分进化算子来生成新的解,并通过适应度比较和拥挤度距离来维持种群的多样性。MODE算法的优点是简单高效,能够在较短时间内找到一系列帕累托最优解。然而,MODE算法在处理高度复杂的问题时可能面临局部收敛和解决方案的多样性不足的问题。 对于更详细的流程图和伪代码,我建议您查阅相关的研究论文,以下是一些参考文献供您阅读: - Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 191(11-12), 1245-1287. - Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. KanGAL Report No. 200001, Indian Institute of Technology, Kanpur, India. - Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103. 这些文献将提供更详细的算法描述、流程图和伪代码,并对每种算法的优点和不足进行了深入讨论。希望对您有所帮助!
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值