PDAF原理简介

1.PDAF原理

原理:是在感光芯片上预留出一些规律性对称的遮蔽像素点,专门用来进行相位检测,通过像素之间的距离及变化来决定对焦的偏移量即相位差(PD值)从而实现快速对焦。

1.1PDAF系统框图

PDAF系统框图

1.2 PDAF 分类

1.2.1 单PD(shieled pixel)

屏蔽掉像素一般的感光区域(黑色部分),值获得一半信号。需要另外的像素屏蔽掉另一半 信号,得到完整的相位差信息。SP越多,对焦越快,但信号损失越严重,目前SP密度控制在1%~3%。
屏蔽掉像素一般的感光区域(黑色部分),值获得一半信号。需要另外的像素屏蔽掉另一半 信号,得到完整的相位差信息。SP越多,对焦越快,但信号损失越严重,目前SP密度控制在1%~3%。
在这里插入图片描述
在这里插入图片描述

1.2.2 双PD(Dual Pixel)

将同一个像素底部的感光区域(即光电二极管)一分为二,在同一个像素内即可完成相位信 息捕获。dual PD 也有叫 2PD、全像素双核对焦,这种像素覆盖率100%,所以对焦体验最佳。但由于将光电二极管一分为二,井口变小,FWC急剧衰减,dynamicrange衰减严重,拍照 非常容易过曝。三星凭借优秀的ISP和调试能力过曝控制的还可以,但金立M2017驾驭能力就稍弱了。但单从对焦来说,dual PD>2*1PD>shield pixel,这种优势尤其体现在暗环境下对焦的稳定性上,比如10lux/5lux/1lux这些极暗环境下的对焦。

使用两个光电二极管(即两个检测点)
把两个光电二极管放在一个像素井内(即成对出现 )分别读取两个二极管内的信息(即每个只取一半)也就是说之前需要两个像素并且各遮一半才能组成一组对焦点,现在不需要了,对光线利用率也很高。对焦时开一个二极管,成像时两个二极管拼起来同时使用。使用这种方法能彻底解决掩蔽式相位对焦“挖像素”带来的掉画质问题,并且理论上可以做到所有像素都能参与对焦

优点:暗光对焦能力非常强悍 不需要额外相位对焦像素 画质表现接近反差对焦传感器 而且可以生成深度图供景深处理,是目前手机上较为理想的解决方案
缺点:全像素采样视频模式下不能相位对焦

1.2.3

简单分析三种PDAF技术:

1.shield pixel
屏蔽掉像素一般的感光区域(黑色部分),值获得一半信号。需要另外的像素屏蔽掉另一半 信号,得到完整的相位差信息。 SP越多,对焦越快,但信号损失越严重,目前SP密度控制在1%~3%。

2.super PD
将相邻的像素共用一个on chip microlens得到相位差信息,一般在Green上处理。 同样的,二合一的PD越多,对焦越快,但信号损失越严重,目前密度也控制在1%~3%

3.dual PD
将同一个像素底部的感光区域(即光电二极管)一分为二,在同一个像素内即可完成相位信 息捕获。dual PD 也有叫 2PD、全像素双核对焦,这种像素覆盖率100%,所以对焦体验最佳。但由于将光电二极管一分为二,井口变小,FWC急剧衰减,dynamic
range衰减严重,拍照 非常容易过曝。

但单从对焦来说,dual PD>2*1 PD>shield
pixel,这种优势尤其体现在暗环境下对焦的稳定性上,比如10lux/5lux/1lux这些极暗环境下的对焦。另外,即使是同一种PDAF,受microlens的设计、像素大小、用于PD的color filter、sensitivity、Fab制程等因素影响,各家的效果还是不一样。

2.高通PDAF校准流程

2.1 gain map介绍

由于shiled pixel一半被遮盖住,感光面积只有正常pixel感光能力的一半,所以感光能力要比正常的pixel感光能力弱,gainmap就是对遮蔽pixel做感光能力的补偿
在这里插入图片描述

2.1.2 gain map校准流程

  1. 将马达推到远近焦中间位置
  2. 下寄存器打开PD点
  3. 自动AE到指定的曝光值
  4. 取一张raw10图片
  5. 调用高通的DLL计算出应该补偿的数值
  6. 把增益写入OTP

有些Sensor的PD Pixel都是G Pixel,有的是R、B Pixel,有的是B、G Pixel,故不同芯片的数据左右差异大小不同。

2.2 PDAF DCC

相位视差和镜头运动之间的转换用离焦转换系数(DCC)表示,其单位为dac/pixel。
在这里插入图片描述

DCC为一个无符号量,以正值的形式存储在eeprom中。如果PDAF校准工具输出的DCC的值为一个负值,则会返回一个错误代码,表示校准结果无效。在sensor配置中,左右PD点配置错误可能会导致这种情况

在这里插入图片描述

像素的视差以像素为单位表示,计算得到的位移量是一个相对值,表示镜头需要移动多少距离,而不是表示镜头当前所在的位置,PD值有正负之分,PD值决定马达的位移方向,当PD值等于0时,图像是最清晰的

2.3 DCC Calibration

2.3.1 校准chart

DCC校整可以使用菱形chart或者条形chart进行测试
线条chart ,和菱形chart相比,条形chart可以获得更均匀的相位差数据,DCC校准Chart是校准DLL所需要输入的工具之一,对于垂直放置PD点的sensor,推荐使用水平的线条测试Chart

2.3.2 测试距离

DCC校准推荐的相机模组到测试chart的推荐距离位置在 AF_cal_inf到af_cal_near中间的位置,大多数摄像头模组设计的测试距离在20cm到30cm,在使用长焦镜头的camera模组中,这个测试距离有可能会达到2m
camera视场角覆盖测试图活动区域的85%-95%,如下图所示。
在这里插入图片描述
正确使用测试chart,避免DCC校准过程中的系统误差,从而导致PDAF性能问题。测试图尺寸不合适,测试图旋转/或倾斜,以及过度曝光导致常见的DCC校准错误。下图显示了正确使用测试图的例子,以及常见的测试图问题。在这里插入图片描述

2.3.3 DCC校准过程

Lens从远焦移动到近焦总共移动9步,在镜头移动过程中,会获取十张图片,从这十张图片中获取十个相位差的值和10个焦距值,用这些数据进行线性回归,得到DCC值,图像被划分为6X8个区域,从而形成6X8DCCmap,如下图所示:
在这里插入图片描述

2.3.4 校准流程:

  1. 打开PD点
  2. 马达推到远近焦中间位置
  3. AE曝光
  4. 获取Gain map数据
  5. 从远焦到近焦取十张图片
  6. PDAF第二步计算DCC
### 自动对焦中的深度学习方法与模型 在探讨自动对焦(Automatic Focus, AF)技术时,可以借鉴图像处理领域中广泛应用的深度学习算法。尽管直接针对AF的研究较少见于文献,但可以从其他相关研究推断其可能的应用方式。 #### 利用卷积神经网络提升自动对焦性能 卷积神经网络(Convolutional Neural Networks, CNNs)[^1] 是一种特别适合处理视觉模式识别任务的人工神经网络架构,在计算机视觉方面表现出色。CNN能够通过多层特征提取来捕捉输入图片的空间层次结构信息,这使得它非常适合用于分析相机传感器获取到的画面数据并据此调整镜头位置实现精准聚焦。 对于自动对焦而言,可以通过训练特定类型的CNN模型来进行场景分类或者预测最佳焦点所在区域: - **基于相位检测法(PDAF)** 的混合型自适应系统:结合传统PDAF速度快的优点以及对比度检测(CDAF)精度高的特点; - **端到端的学习框架** :直接从原始RAW图象中学习映射关系得到清晰度评分函数; 这些方案均依赖强大的GPU计算资源支持大规模参数优化过程,并且通常会采用迁移学习(Transfer Learning)[^3] 技术加速收敛速度减少样本需求量。 此外,为了防止过拟合现象发生影响泛化能力,还会引入早停(Early Stopping)机制监控验证集上的表现及时终止迭代更新操作[^3]。 ```python import tensorflow as tf from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = Sequential([ Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(height,width,channels)), MaxPooling2D(pool_size=(2, 2)), Conv2D(filters=64, kernel_size=(3, 3), activation='relu'), MaxPooling2D(pool_size=(2, 2)), Flatten(), Dense(units=128, activation='relu'), Dense(units=num_classes, activation='softmax') ]) ``` 此代码片段展示了一个简单的两层卷积池化单元组成的CNN模型定义流程,适用于多种图像分类任务包括但不限于自动对焦决策辅助工具开发。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值