[AI算法][TensorFlow]:TensorFlow 学习笔记 - 几种 LSTM 对比

TensorFlow 学习笔记 - 几种 LSTM 对比

  • tf.nn.rnn_cell.BasicLSTMCell
  • tf.nn.static_rnn
  • tf.nn.static_rnn
  • tf.nn.dynamic_rnn
  • tf.contrib.cudnn_rnn
  • tf.contrib.rnn.LSTMBlockCell
  • tf.contrib.rnn.LSTMBlockFusedCell
  • tf.contrib.rnn.BasicLSTMCell variants
  1. BasicLSTMCell

tf.nn.rnn_cell.BasicLSTMCell 是一种参考或者标准实现。一般情况下,都不应该是首选。

The tf.nn.rnn_cell.BasicLSTMCell should be considered a reference
implementation and used only as a last resort when no other options will work.

  1. tf.nn.static_rnn vs tf.nn.dynamic_rnn

如果不是使用一个 RNN layer,而是只使用一个 RNN cell,应该首要选择 tf.nn.dynamic_rnn。好处有:

  1. 如果 inputs 过大的话,使用 tf.nn.static_rnn 会增加 graph 的大小,并且有增加编译时间。 2.
    tf.nn.dynamic_rnn 能够很好地处理长 sequence,它可以从 GPU 和 CPU 中交换内存。
    When using one of the cells, rather than the fully fused RNN layers, you have
    a choice of whether to use tf.nn.static_rnn or tf.nn.dynamic_rnn. There
    shouldn’t generally be a performance difference at runtime, but large unroll
    amounts can increase the graph size of the tf.nn.static_rnn and cause long
    compile times. An additional advantage of tf.nn.dynamic_rnn is that it can
    optionally swap memory from the GPU to the CPU to enable training of very long
    sequences. Depending on the model and hardware configuration, this can come at
    a performance cost. It is also possible to run multiple iterations of
    tf.nn.dynamic_rnn and the underlying tf.while_loop construct in parallel,
    although this is rarely useful with RNN models as they are inherently
    sequential.

  2. tf.contrib.cudnn_rnn

  3. 如果 NN 限定只在 NVIDIA 的 GPU 上运行,可以考虑使用 tf.contrib.cudnn_rnn,它通常比
    tf.contrib.rnn.BasicLSTMCell 和 tf.contrib.rnn.LSTMBlockCell 快一个数量级,并且, 相比于
    tf.contrib.rnn.BasicLSTMCell,它使用少三四倍的内存。 2. 如果 NN 需要 layer normalization,
    则不应该使用 tf.contrib.cudnn_rnn。
    On NVIDIA GPUs, the use of tf.contrib.cudnn_rnn should always be preferred
    unless you want layer normalization, which it doesn’t support. It is often at
    least an order of magnitude faster than tf.contrib.rnn.BasicLSTMCell and
    tf.contrib.rnn.LSTMBlockCell and uses 3-4x less memory than
    tf.contrib.rnn.BasicLSTMCell.

  4. tf.contrib.rnn.LSTMBlockCell

tf.contrib.rnn.LSTMBlockCell 通常在 reinforcement learning 中使用, 适用于一个时间步伐运行一次 RNN
的场景。一般会和 tf.while_loop 结合使用,用来与 environment 进行交互。

If you need to run one step of the RNN at a time, as might be the case in
reinforcement learning with a recurrent policy, then you should use the
tf.contrib.rnn.LSTMBlockCell with your own environment interaction loop inside
a tf.while_loop construct. Running one step of the RNN at a time and returning
to Python is possible, but it will be slower.

  1. tf.contrib.rnn.LSTMBlockFusedCell

在只有 CPU,或者 GPU 机器上无法获得 tf.contrib.cudnn_rnn,或者移动设备上,应该使用
tf.contrib.rnn.LSTMBlockFusedCell。

On CPUs, mobile devices, and if tf.contrib.cudnn_rnn is not available on your
GPU, the fastest and most memory efficient option is
tf.contrib.rnn.LSTMBlockFusedCell.

  1. tf.contrib.rnn.BasicLSTMCell variants

对于 tf.contrib.rnn.BasicLSTMCell 变体,比如 tf.contrib.rnn.NASCell,
tf.contrib.rnn.PhasedLSTMCell, tf.contrib.rnn.UGRNNCell,
tf.contrib.rnn.GLSTMCell, tf.contrib.rnn.Conv1DLSTMCell,
tf.contrib.rnn.Conv2DLSTMCell, tf.contrib.rnn.LayerNormBasicLSTMCell, etc.,
它们都具有 tf.contrib.rnn.BasicLSTMCell 的缺点:性能差,高耗内存。
For all of the less common cell types like tf.contrib.rnn.NASCell,
tf.contrib.rnn.PhasedLSTMCell, tf.contrib.rnn.UGRNNCell,
tf.contrib.rnn.GLSTMCell, tf.contrib.rnn.Conv1DLSTMCell,
tf.contrib.rnn.Conv2DLSTMCell, tf.contrib.rnn.LayerNormBasicLSTMCell, etc., one
should be aware that they are implemented in the graph like
tf.contrib.rnn.BasicLSTMCell and as such will suffer from the same poor
performance and high memory usage. One should consider whether or not those
trade-offs are worth it before using these cells. For example, while layer
normalization can speed up convergence, because cuDNN is 20x faster the fastest
wall clock time to convergence is usually obtained without it.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: TensorFlow是一个开源的机器学习框架,可以用来构建各种深度学习模型,其中包括LSTM模型。LSTM是一种循环神经网络,可以用来处理序列数据,比如自然语言文本。情感分析是一种文本分类任务,旨在确定文本的情感极性,如正面、负面或中性。使用TensorFlow LSTM模型进行情感分析可以有效地处理文本序列数据,从而实现准确的情感极性分类。 ### 回答2: TensorFlow是一个开源的机器学习框架,可以用于构建各种深度学习模型,如循环神经网络(Recurrent Neural Network,RNN)。其中,长短期记忆网络(Long Short-Term Memory,LSTM)是一种特殊类型的RNN,被广泛应用于情感分析任务。 情感分析是一种在文本中识别和分析情感倾向、情感极性的任务。通过对文本进行情感分析,可以帮助人们了解公众对某一主题的态度、观点以及情感变化趋势。 使用TensorFlow实现LSTM情感分析的步骤大致如下: 1. 数据准备:获取情感分析的训练数据集,并进行数据预处理,如分词、去除停用词等。 2. 构建词向量模型:使用TensorFlow中的工具(如word2vec)将文本中的每个词转化为一个向量,以便模型可以更好地处理文本数据。 3. 构建LSTM模型:使用TensorFlowLSTM层和其他神经网络层来构建一个情感分析模型。可以根据数据集的特点和任务需求来调整模型的结构和参数。 4. 模型训练:使用训练数据对LSTM模型进行训练,通过反向传播算法进行参数更新,使模型逐渐学习到文本数据的情感分析能力。 5. 模型评估:使用验证集或测试集对训练好的模型进行评估,计算模型的准确率、精确度、召回率等指标,以评估模型的性能。 6. 模型应用:使用训练好的LSTM情感分析模型对新的文本进行情感分析,预测出文本的情感倾向,并根据需求做进一步的处理和应用。 通过以上步骤,我们可以使用TensorFlow实现LSTM情感分析,并得到一个具有一定准确性的情感分析模型。这个模型可以应用于各种领域,如社交媒体情感分析、产品评论情感分析等。 ### 回答3: TensorFlow 是一个开源的机器学习框架,支持多种算法和模型的实现。其中,LSTM(长短期记忆网络)是一种常用的循环神经网络,广泛应用于自然语言处理任务中的序列建模。 情感分析是一种文本分类任务,旨在自动判断一段文本的情感倾向,例如积极或消极。使用 TensorFlowLSTM 实现情感分析可以通过以下步骤完成: 1. 数据准备:首先,需要准备情感分析的训练数据集。该数据集应包括具有标记情感(如积极或消极)的文本样本。 2. 文本预处理:对训练数据集进行预处理,包括词汇表构建、文本分词、文本向量化等步骤。可以使用 TensorFlow 提供的文本处理工具或其他第三方库来完成这些任务。 3. 构建 LSTM 模型:在 TensorFlow 中,可以使用 LSTM 层作为模型的一部分,通过堆叠多个 LSTM 层来构建深度 LSTM 网络。同时,可以添加一些全连接层和激活函数以增加模型的表达能力。 4. 模型训练:使用准备好的训练数据集来训练构建的 LSTM 模型。选择适当的优化器、损失函数和评估指标,并进行适当的超参数调优。 5. 模型评估:使用测试数据集评估训练好的模型的性能。可以使用准确率、精确度、召回率等指标来评估模型的效果。 6. 模型使用:经过训练和评估后,可以使用构建的 LSTM 模型对新的文本进行情感分析。将新的文本经过预处理后输入到模型中,通过模型预测输出的情感倾向。 总结来说,使用 TensorFlowLSTM 实现情感分析需要进行数据准备、文本预处理、构建 LSTM 模型、模型训练、模型评估和模型使用等步骤。通过这些步骤,可以构建一个准确的情感分析模型,用于预测文本的情感倾向。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值