项目实训日志一

项目实训日志一

项目开始已经有几天了,一直在读《Approximation Algorithm》这本书,由于大部分概念都比较陌生,读得很慢,目前主要把第3章的阅读翻译工作完成了。

本章中关键问题是斯坦纳树问题和TSP旅行商问题,在看这两个问题之前要先明确几个概念:
1.最小生成树MST
2.三角不等式
3.欧拉回路
4.哈密顿回路

Chapter3——Steiner Tree and TSP

In this chapter, we will present constant factor algorithms for two fundamental problems, metric Steiner tree and metric TSP. The reasons for considering the metric case of these problems are quite different. For Steiner tree, this is the core of the problem – the rest of the problem reduces to this case. For TSP, without this restriction, the problem admits no approximation factor, assuming P ≠ \ne = NP. The algorithms, and their analyses, are similar in spirit, which is the reason for presenting these problems together.

在本章中,我们将介绍度量斯坦纳树和度量TSP这两个基本问题的常数因子算法。考虑这些问题的度量情况的原因是完全不同的。对于Steiner tree来说,问题的其余部分能够归约化是问题的核心。由于TSP是NP完全问题,因为P≠NP,所以这个问题不可能有多项式时间算法。这两个问题的算法和分析在精神上是相似的,这就是把这两个问题放在一起的原因.

3.1 Metric Steiner tree

度量Steiner tree

The Steiner tree problem was defined by Gauss in a letter he wrote to Schumacher (reproduced on the cover of this book). Today, this problem occupies a central place in the field of approximation algorithms. The problem has a wide range of applications, all the way from finding minimum length interconnection of terminals in VLSI design to constructing phylogeny trees in computational biology. This problem and its generalizations will be studied extensively in this book, see Chapters 22 and 23.
高斯在给舒马赫的一封信中定义了斯坦纳树问题(此书的封面转载)。今天,这个问题占据了近似算法领域的中心位置。该问题具有广泛的应用,从VLSI设计中寻找终端的最小互连长度,到计算生物学中构建系统发育树。这个问题及其概括将在本书第22和23章中被广泛研究。

Problem 3.1 (Steiner tree)

Given an undirected graph G =(V,E) with nonnegative edge costs and whose vertices are partitioned into two sets, required and Steiner, find a minimum cost tree in G that contains all the required vertices and any subset of the Steiner vertices.
We will first show that the core of this problem lies in its restriction to instances in which the edge costs satisfy the triangle inequality, i.e., G is a complete undirected graph,and for any three vertices u, v,and w,cost(u,v)≤ cost(u,w) + cost(v,w). Let us call this restriction the metric Steiner tree problem.
给定一个带权的无向图G =(V,E),其顶点被划分为requiredSteiner两个集合,在G中找到一个包含所有required顶点,和Steiner顶点的任意子集的最小代价树。

[百度:斯坦纳树问题是组合优化问题,与最小生成树相似,是最短网络的一种。最小生成树是在给定的点集和边中寻求最短网络使所有点连通。而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小。最小生成树可以认为是斯坦纳树的特殊情况]
在这里插入图片描述

我们要首先说明这个问题的核心在于它对实例的限制,即边代价满足三角形不等式。G是一个完全无向图,对于任意三个顶点u,v,w,cost(u,v)≤cost(u,w) + cost(v,w)。我们把这个限制称为度量斯坦纳树问题。

Theorem 3.2

There is an approximation factor preserving reduction(规约化) from the Steiner tree problem to the metric Steiner tree problem.
从斯坦纳树问题到度量斯坦纳树问题有一个保持近似比的规约化。

[关于规约化]https://baijiahao.baidu.com/s?id=1662884327947972931&wfr=spider&for=pc
归约化是解决复杂问题的一种思路工具,课件中提到了多项式归约,如果我们找到了问题X的多项式时间解法,那么我们有理由相信问题Y同样可以找到多项式时间解法.Y可以在多项式时间内规约为X,这意味着X至少和Y一样困难,因为你如果能解决X,就能解决Y。

Proof: We will transform, in polynomial time, an instance I of the Steiner tree problem, consisting of graph G = ( V , E ) G =(V,E) G=(V,E), to an instance I ′ I' I of the metric Steiner tree problem as follows. Let G ′ G' G be the complete undirected graph on vertex set V . Define the cost of edge (u,v) in G ′ G' G to be the cost of a shortest u–v path in G G G. G ′ G' G is called the metric closure of G. The partition of V into required and Steiner vertices in I ′ I' I is the same as in I I I.
证明:我们将在多项式时间内,把由图G=(V,E)组成的斯坦纳树问题的一个实例I变换为度量斯坦纳树问题的一个实例 I ′ I' I,如下所示。设 G ′ G' G为顶点集V上的完全无向图。定义 G ′ G' G

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值