文章目录
0. 说明
本文主要记录自己在复现《Attention-based Extraction of Structured Information from Street View Imagery》论文代码的一些坑。
1. 本人环境
(1)win10系统
(2)python3.6
(3)tensorflow1.15(gpu版本)
一定记得切换tensorflow的版本,要不问题就非常多。
2. import 爆红解决
在上述环境下,import爆红有很多:
(1)对于爆红1,是由于tensorflow版本问题导致,解决如下:
Step1: 在terminal中输入: pip install tf_slim
Step2: 在代码中输入下面代码进行替换,即可解决
import tf_slim as slim
(2)对于爆红2,将原来的代码替换成如下代码,即可解决
from tf_slim import model_analyzer
(3)对于爆红3,是找不到本地包,直接将路径写完整即可
from python import data_provider
其他文件也会有些爆红,但基本都是以上几个错误,可利用上述方法进行解决。
3. 代码解释
3.1 inception_preprocessing.py
3.1.1 def apply_with_random_selector(x, func, num_cases):
作用:该方法计算函数func(x, sel), sel从[0…cases-1]中取值。
(1)tf.random.uniform(): 从均匀分布的序列中随机取出指定个数的值
# 参数shape是张量形状,minval是最小值,maxval是最大值,dtype是类型,seed是随机种子,name是名称。
tf.random_uniform(shape, # 张量形状
minval=0, # 随机的下限值(包含)
maxval=None, # 随机的上限值(不包含)
dtype=tf.float32,
seed=None, # 随机种子
name=None)
从均匀分布中输出随机值。生成的值遵循范围内的均匀分布 [minval, maxval)。下限minval包含在该范围内,而上限maxval是不包含的。eg:
r4 = tf.random_uniform([3], minval=3.0, maxval = 4.0)
print(sess.run(r4)) # r4 = [3.880138, 3.0414245, 3.4914312]
(2)control_flow_ops.switch(x, tf.equal(sel, case))
作用:用来选择数据的输出通道,如果pred为False则data从第一个输出,如果pred为True则数据从第二个输出。
返回值:(output_false,output_true),如果pred为true就输出output_true,如果pred为false就输出output_false
参数解释见代码例子:
output_false, output_true = control_flow_ops.switch(data=[1, 2, 3, 4], # 需要被选择输出的tensor数据
pred=False) # bool类型用来选择data的输出通道
print(output_false.eval())
output_false, output_true = control_flow_ops.switch([5, 6, 7, 8], True)
print(output_true.eval())
输出:
[1 2 3 4] 因为pred=False,所以数据从output_false通道输出,下面同理
[5 6 7 8]
4. 运行报错
4.1 ImportError: cannot import name ‘trace’ from…
报错如下:
ImportError: cannot import name 'trace' from 'tensorflow.python.profiler'
错误原因: 查了一下网上,说是tensorflow-gpu版本跟tensorflow-estimator版本不匹配,比如我的tensorflow-gpu版本是1.15.0,但tensorflow-estimator是2.6.0
解决:
Step1: anaconda prompt中输入conda list,查看tensorflow-estimator的版本:
(不知为何我这里出现了两个tensorflow-estimator)
Step2: 卸载之前的tensorflow-estimator
pip uninstall tensorflow-estimator
Step3: 重新安装与tensorflow-gpu相同的tensorflow-estimator
pip install tensorflow-estimator==1.15.0
完成