《Attention-based Extraction of Structured Information from Street View Imagery》代码复现记录ing

0. 说明

​ 本文主要记录自己在复现《Attention-based Extraction of Structured Information from Street View Imagery》论文代码的一些坑。

1. 本人环境

​ (1)win10系统
​ (2)python3.6
​ (3)tensorflow1.15(gpu版本)
​ 一定记得切换tensorflow的版本,要不问题就非常多。

2. import 爆红解决

​ 在上述环境下,import爆红有很多:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oVZujCXg-1652958471019)(../image/Attention-based Extraction of Structured Information from Street View Imagery-代码复现重点.img/image-20220519185503347.png)]
​ (1)对于爆红1,是由于tensorflow版本问题导致,解决如下:
Step1: 在terminal中输入: pip install tf_slim
Step2: 在代码中输入下面代码进行替换,即可解决

import tf_slim as slim

​ (2)对于爆红2,将原来的代码替换成如下代码,即可解决

from tf_slim import model_analyzer

​ (3)对于爆红3,是找不到本地包,直接将路径写完整即可

from python import data_provider

​ 其他文件也会有些爆红,但基本都是以上几个错误,可利用上述方法进行解决。

3. 代码解释

3.1 inception_preprocessing.py

3.1.1 def apply_with_random_selector(x, func, num_cases):
作用:该方法计算函数func(x, sel), sel从[0…cases-1]中取值。
(1)tf.random.uniform(): 从均匀分布的序列中随机取出指定个数的值

# 参数shape是张量形状,minval是最小值,maxval是最大值,dtype是类型,seed是随机种子,name是名称。
tf.random_uniform(shape,            # 张量形状
                  minval=0,         # 随机的下限值(包含)
                  maxval=None,      # 随机的上限值(不包含)
                  dtype=tf.float32, 
                  seed=None,        # 随机种子
                  name=None)	     

从均匀分布中输出随机值。生成的值遵循范围内的均匀分布 [minval, maxval)。下限minval包含在该范围内,而上限maxval是不包含的。eg:

r4 = tf.random_uniform([3], minval=3.0, maxval = 4.0)
print(sess.run(r4)) # r4 = [3.880138, 3.0414245, 3.4914312]

(2)control_flow_ops.switch(x, tf.equal(sel, case))
作用:用来选择数据的输出通道,如果pred为False则data从第一个输出,如果pred为True则数据从第二个输出。
返回值:(output_false,output_true),如果pred为true就输出output_true,如果pred为false就输出output_false
参数解释见代码例子:

        output_false, output_true = control_flow_ops.switch(data=[1, 2, 3, 4],  # 需要被选择输出的tensor数据
                                                            pred=False)         # bool类型用来选择data的输出通道
        print(output_false.eval())
        output_false, output_true = control_flow_ops.switch([5, 6, 7, 8], True)
        print(output_true.eval())

输出:

[1 2 3 4] 因为pred=False,所以数据从output_false通道输出,下面同理
[5 6 7 8]

4. 运行报错

4.1 ImportError: cannot import name ‘trace’ from…

报错如下

ImportError: cannot import name 'trace' from 'tensorflow.python.profiler'

错误原因: 查了一下网上,说是tensorflow-gpu版本跟tensorflow-estimator版本不匹配,比如我的tensorflow-gpu版本是1.15.0,但tensorflow-estimator是2.6.0
解决:
Step1: anaconda prompt中输入conda list,查看tensorflow-estimator的版本:
在这里插入图片描述
(不知为何我这里出现了两个tensorflow-estimator)
Step2: 卸载之前的tensorflow-estimator

pip uninstall tensorflow-estimator

Step3: 重新安装与tensorflow-gpu相同的tensorflow-estimator

pip install tensorflow-estimator==1.15.0

完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值