51. N皇后

leetcode51:51. N皇后

题目描述

n皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
在这里插入图片描述

Example

输入:4
输出:[
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。

solution idea

递归回溯

回溯算法的基本思想是:首先为问题定义一个解空间,这个空间至少包含问题的一个解(可能就是最优的)。然后,先选择某一种可能的情况向前探索,在搜索的过程中,一旦发现原来的选择不优或者不能达到目标,就退回上一步重新选择,并继续向前搜索。如此反复进行,直至得到解或者证明无解存在。

  • 任意两个皇后都不能处在同一行、同一列或者同一斜线上。
  • 以深度优先的方式搜索解空间,并且在搜索的过程中使用剪枝函数来剪枝。根据条件sol[j]==sol[k]判断处于同一行,abs(k-i)==abs(k-i)判断是否处于同一斜线。
  • 利用canPlace()进行每一个皇后是否可以摆放的设定
class Solution {
private:
    int N;
    string dots;
    vector<int> sol;
    vector<string> sol_transform;
    vector<vector<string>> res;
public:
    void getSol(vector<int> sol)
    {
        sol_transform.assign(N,dots);
        for(int i=0; i<N; i++)
        {
            sol_transform[i][sol[i]]='Q';
        }
        res.push_back(sol_transform);
        return;
    }
    bool canPlace(int k) //判断 k 行是否可以放置 'Q'
    {
        for(int j=0;j<k;j++)
        {
            if(sol[j]==sol[k] || abs(sol[k]-sol[j])==abs(j-k)) return false;
        }
        return true;
    }
    void backtrack(int k) //第 k 行 结果
    {
        if(k==N) 
        {
            getSol(sol);
            return;
        }
        for(int i=0;i<N;i++) //对所有行遍历
        {
            sol[k]=i; // k行 i列为'Q'
            if(canPlace(k)) backtrack(k+1);
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        N=n;
        dots.assign(N,'.');
        sol.assign(N,0);
        backtrack(0);
        return res;
    }
};

参考文献

  1. c++ prime 第5版
  2. 算法分析与设计(C++描述) 石志国、刘冀伟、姚亦飞编著
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值