leetcode51:51. N皇后
题目描述
n
皇后问题研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
Example
输入:4
输出:[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。
solution idea
递归回溯
回溯算法的基本思想是:首先为问题定义一个解空间,这个空间至少包含问题的一个解(可能就是最优的)。然后,先选择某一种可能的情况向前探索,在搜索的过程中,一旦发现原来的选择不优或者不能达到目标,就退回上一步重新选择,并继续向前搜索。如此反复进行,直至得到解或者证明无解存在。
- 任意两个皇后都不能处在同一行、同一列或者同一斜线上。
- 以深度优先的方式搜索解空间,并且在搜索的过程中使用剪枝函数来剪枝。根据条件
sol[j]==sol[k]
判断处于同一行,abs(k-i)==abs(k-i)
判断是否处于同一斜线。 - 利用
canPlace()
进行每一个皇后是否可以摆放的设定
class Solution {
private:
int N;
string dots;
vector<int> sol;
vector<string> sol_transform;
vector<vector<string>> res;
public:
void getSol(vector<int> sol)
{
sol_transform.assign(N,dots);
for(int i=0; i<N; i++)
{
sol_transform[i][sol[i]]='Q';
}
res.push_back(sol_transform);
return;
}
bool canPlace(int k) //判断 k 行是否可以放置 'Q'
{
for(int j=0;j<k;j++)
{
if(sol[j]==sol[k] || abs(sol[k]-sol[j])==abs(j-k)) return false;
}
return true;
}
void backtrack(int k) //第 k 行 结果
{
if(k==N)
{
getSol(sol);
return;
}
for(int i=0;i<N;i++) //对所有行遍历
{
sol[k]=i; // k行 i列为'Q'
if(canPlace(k)) backtrack(k+1);
}
}
vector<vector<string>> solveNQueens(int n) {
N=n;
dots.assign(N,'.');
sol.assign(N,0);
backtrack(0);
return res;
}
};
参考文献
- c++ prime 第5版
- 算法分析与设计(C++描述) 石志国、刘冀伟、姚亦飞编著