杭电OJ | 2136 Largest prime factor

2136 Largest prime factor

Problem Description   Everybody knows any number can be combined by the prime number. Now, your task is telling me what position of the largest prime factor.The position of prime 2 is 1, prime 3 is 2, and prime 5 is 3, etc. Specially, LPF(1) = 0.

Input        Each line will contain one integer n(0 < n < 1000000).

Output     Output the LPF(n).

Sample Input

1 2 3 4 5

Sample Output

0 1 2 1 3

TLE...

#include<stdio.h>
#include<math.h>
int main() 
{
	int prime[80000];
	int j,index=1;
	for (j=2; j<1000000; j++) {
		if(isprime(j)==1) {
			prime[index] = j;
			index++;
		}
	}
	int input;
	while(scanf("%d",&input)!=EOF) {
		if(input==1) {
			printf("0n");
		}
		else{
			int factor;
	    	for(j=1; j<=input; j++){
	    		if((input%j==0)&&(isprime(j)==1)){
	    			factor = j;
				}
			}
			printf("factor is %dn",factor);
			for(index=1; index<80000; index++){
				if(prime[index]==factor){
					printf("%dn",index);
					break;
				}
			}    
		}
    }
    return 0;
}
int isprime(int num){
	int i;
	for(i=2; i<=sqrt(num); i++){
		if(num%i==0){
			return 0;
		}
	}
	return 1;
}

别人家的思想: 

参考来源: https://blog.csdn.net/wyf12138/article/details/51694295

#include <stdio.h>
#include <math.h>
#define MAX 1000001
int lpf[MAX];
 
int main()
{
	int n,i,j,postion=0;
	//postion表示某个素数在素数表中的位置 
	
	/*先运用素数筛法的原理计算所有1到MAX中的lpf*/
	
	lpf[1]=0;
	//lpf(1)=0
	 
	for(i=2;i<MAX;i++)  //从素数2开始依次判别素数 
	{
		if(lpf[i]==0)     //如果i还未被未被小于自身的任何素数整除,则确定i也是素数 
		{
			postion++;
			/*postion的值更新后,表示素数i在素数表中是第postion个*/
			for(j=i;j<MAX;j+=i)
				lpf[j]=postion;
			//所有是i的倍数的整数,lpf的值暂时为postion
			
			/*由于筛选出的素数从小到大,lpf[a](a为任一整数)一定
			会被a的最大的素因数的postion所覆盖,也就是最终会有
						数组元素lpf[a]=函数值lpf(a)*/	
		}
	}
	
	while(scanf("%d",&n)!=EOF)
	{
		printf("%d\n",lpf[n]);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值