【算法学习】线性回归,逻辑回归

【算法学习】线性回归,逻辑回归

回归问题的条件/前提:

1) 收集的数据

2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。

  1. 线性回归
    假设 特征 和 结果 都满足线性。即不大于一次方。这个是针对 收集的数据而言。
    收集的数据中,每一个分量,就可以看做一个特征数据。每个特征至少对应一个未知的参数。这样就形成了一个线性模型函数,向量表示形式:

这个就是一个组合问题,已知一些数据,如何求里面的未知参数,给出一个最优解。 一个线性矩阵方程,直接求解,很可能无法直接求解。有唯一解的数据集,微乎其微。

基本上都是解不存在的超定方程组。因此,需要退一步,将参数求解问题,转化为求最小误差问题,求出一个最接近的解,这就是一个松弛求解。

求一个最接近解,直观上,就能想到,误差最小的表达形式。仍然是一个含未知参数的线性模型,一堆观测数据,其模型与数据的误差最小的形式,模型与数据差的平方和最小:

clip_image006

这就是损失函数的来源。接下来,就是求解这个函数的方法,有最小二乘法,梯度下降法。

http://zh.wikipedia.org/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84

最小二乘法

是一个直接的数学求解公式,不过它要求X是列满秩的,

clip_image008

梯度下降法

分别有梯度下降法,批梯度下降法,增量梯度下降。本质上,都是偏导数,步长/最佳学习率,更新,收敛的问题。这个算法只是最优化原理中的一个普通的方法,可以结合最优化原理来学,就容易理解了。

逻辑回归

逻辑回归与线性回归的联系、异同?

逻辑回归的模型 是一个非线性模型,sigmoid函数,又称逻辑回归函数。但是它本质上又是一个线性回归模型,因为除去sigmoid映射函数关系,其他的步骤,算法都是线性回归的。可以说,逻辑回归,都是以线性回归为理论支持的。

只不过,线性模型,无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。

另外它的推导含义:仍然与线性回归的最大似然估计推导相同,最大似然函数连续积(这里的分布,可以使伯努利分布,或泊松分布等其他分布形式),求导,得损失函数。

\begin{align}J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)})) \right]\end{align}

逻辑回归函数

f(t) = \frac{et}{et+1} = \frac{1}{1+e^{-t}}, 表现了0,1分类的形式。

应用举例:

是否垃圾邮件分类?

是否肿瘤、癌症诊断?

是否金融欺诈?,

一般线性回归

线性回归 是以 高斯分布 为误差分析模型; 逻辑回归 采用的是 伯努利分布 分析误差。

而高斯分布、伯努利分布、贝塔分布、迪特里特分布,都属于指数分布。

clip_image040

而一般线性回归,在x条件下,y的概率分布 p(y|x) 就是指 指数分布.

经历最大似然估计的推导,就能导出一般线性回归的 误差分析模型(最小化误差模型)。

softmax回归就是 一般线性回归的一个例子。

有监督学习回归,针对多类问题(逻辑回归,解决的是二类划分问题),如数字字符的分类问题,0-9,10个数字,y值有10个可能性。

而这种可能的分布,是一种指数分布。而且所有可能的和 为1,则对于一个输入的结果,其结果可表示为:

\begin{align}h_\theta(x^{(i)}) =\begin{bmatrix}p(y^{(i)} = 1 | x^{(i)}; \theta) \p(y^{(i)} = 2 | x^{(i)}; \theta) \\vdots \p(y^{(i)} = k | x^{(i)}; \theta)\end{bmatrix}=\frac{1}{ \sum_{j=1}{k}{e{ \theta_j^T x^{(i)} }} }\begin{bmatrix}e^{ \theta_1^T x^{(i)} } \e^{ \theta_2^T x^{(i)} } \\vdots \e^{ \theta_k^T x^{(i)} } \\end{bmatrix}\end{align}
参数是一个k维的向量。

而代价函数:
\begin{align}J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\left{y^{(i)} = j\right} \log \frac{e{\theta_jT x{(i)}}}{\sum_{l=1}k e^{ \theta_l^T x^{(i)} }}\right]\end{align}
是逻辑回归代价函数的推广。

而对于softmax的求解,没有闭式解法(高阶多项方程组求解),仍用梯度下降法,或L-BFGS求解。

当k=2时,softmax退化为逻辑回归,这也能反映softmax回归是逻辑回归的推广。

线性回归,逻辑回归,softmax回归 三者联系,需要反复回味,想的多了,理解就能深入了。

  1. 拟合:拟合模型/函数
    由测量的数据,估计一个假定的模型/函数。如何拟合,拟合的模型是否合适?可分为以下三类

合适拟合

欠拟合

过拟合

看过一篇文章(附录)的图示,理解起来很不错:

欠拟合:
逻辑回归欠拟合-我爱公开课-52opencourse.com

合适的拟合
逻辑回归合适的拟合-我爱公开课-52opencourse.com

过拟合
逻辑回归过拟合-我爱公开课-52opencourse.com

过拟合的问题如何解决?

问题起源?模型太复杂,参数过多,特征数目过多。

方法: 1) 减少特征的数量,有人工选择,或者采用模型选择算法

http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html (特征选择算法的综述)

 2) 正则化,即保留所有特征,但降低参数的值的影响。正则化的优点是,特征很多时,每个特征都会有一个合适的影响因子。
  1. 概率解释:线性回归中为什么选用平方和作为误差函数?
    假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布。这个假设是靠谱的,符合一般客观统计规律。

数据x与y的条件概率:

clip_image016

若使 模型与测量数据最接近,那么其概率积就最大。概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计敲打。对最大似然函数估计进行推导,就得出了求导后结果: 平方和最小公式

  1. 参数估计 与 数据的关系
    拟合关系

  2. 错误函数/代价函数/损失函数:
    线性回归中采用平方和的形式,一般都是由模型条件概率的最大似然函数 概率积最大值,求导,推导出来的。

统计学中,损失函数一般有以下几种:

1) 0-1损失函数

L(Y,f(X))={1,0,Y≠f(X)Y=f(X)

2) 平方损失函数

L(Y,f(X))=(Y−f(X))2

3) 绝对损失函数

L(Y,f(X))=|Y−f(X)|

4) 对数损失函数

L(Y,P(Y|X))=−logP(Y|X)

损失函数越小,模型就越好,而且损失函数 尽量 是一个凸函数,便于收敛计算。

线性回归,采用的是平方损失函数。而逻辑回归采用的是 对数 损失函数。 这些仅仅是一些结果,没有推导。

  1. 正则化:
    为防止过度拟合的模型出现(过于复杂的模型),在损失函数里增加一个每个特征的惩罚因子。这个就是正则化。如正则化的线性回归 的 损失函数:

正则化正式的定义-我爱公开课-52opencourse.com

lambda就是惩罚因子。

正则化是模型处理的典型方法。也是结构风险最小的策略。在经验风险(误差平方和)的基础上,增加一个惩罚项/正则化项。

线性回归的解,也从

θ=(XTX)−1XTy

转化为

不可逆后的正规方程-我爱公开课-52opencourse.com

括号内的矩阵,即使在样本数小于特征数的情况下,也是可逆的。

逻辑回归的正则化:

正则化逻辑回归Cost Function-我爱公开课-52opencourse.com

从贝叶斯估计来看,正则化项对应模型的先验概率,复杂模型有较大先验概率,简单模型具有较小先验概率。这个里面又有几个概念。

什么是结构风险最小化?先验概率?模型简单与否与先验概率的关系?

经验风险、期望风险、经验损失、结构风险
期望风险(真实风险),可理解为 模型函数固定时,数据 平均的 损失程度,或“平均”犯错误的程度。 期望风险是依赖损失函数和概率分布的。

只有样本,是无法计算期望风险的。

所以,采用经验风险,对期望风险进行估计,并设计学习算法,使其最小化。即经验风险最小化(Empirical Risk Minimization)ERM,而经验风险是用损失函数来评估的、计算的。

对于分类问题,经验风险,就训练样本错误率。

对于函数逼近,拟合问题,经验风险,就平方训练误差。

对于概率密度估计问题,ERM,就是最大似然估计法。

而经验风险最小,并不一定就是期望风险最小,无理论依据。只有样本无限大时,经验风险就逼近了期望风险。

如何解决这个问题? 统计学习理论SLT,支持向量机SVM就是专门解决这个问题的。

有限样本条件下,学习出一个较好的模型。

由于有限样本下,经验风险Remp[f]无法近似期望风险R[f] 。因此,统计学习理论给出了二者之间的关系:R[f] <= ( Remp[f] + e )

而右端的表达形式就是结构风险,是期望风险的上界。而e = g(h/n)是置信区间,是VC维h的增函数,也是样本数n的减函数。

VC维的定义在 SVM,SLT中有详细介绍。e依赖h和n,若使期望风险最小,只需关心其上界最小,即e最小化。所以,需要选择合适的h和n。这就是结构风险最小化Structure Risk Minimization,SRM.

SVM就是SRM的近似实现,SVM中的概念另有一大筐。就此打住。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值