题目链接
把除变成减这种操作惊了……写到后面写昏头,一个sb错一直没查出来……
问题描述
输入
第一行为两个空格隔开的整数 n,q 分别表示商贩个数和政令 + 询问个数。
第二行包含 n 个由空格隔开的整数 a0∼an−1
接下来 q 行,每行表示一个操作,第一个数表示操作编号 1∼4 ,接下来的输入和问题描述一致。
输出
对于每个 3、4 操作,输出询问答案。
样例输入
10 10
-5 -4 -3 -2 -1 0 1 2 3 4
1 0 4 1
1 5 9 1
2 0 9 3
3 0 9
4 0 9
3 0 1
4 2 3
3 4 5
4 6 7
3 8 9
样例输出
-2
-2
-2
-2
0
1
1
对于 30%的数据,n,q≤10^3;
对于 60% 的数据,保证数据随机;
对于 100%的数据,1≤n,q≤10^5,0≤l≤r≤n−1,c∈[−10^4,10^4],d∈[2,10^9]
(PS:题目描述里有个小错,应该看得出)
题解
维护区间和、最大值、最小值。如果最大值整除后作差与最小值整除后作差的差值相同,则可以把差值打标记(即由除变成区间减的标记)
(查了好久错orz…)
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define lc (o<<1)
#define rc (o<<1|1)
#define mid (l+r>>1)
int n,q;//人数,政令+询问个数
typedef long long ll;
const int N=1e5+10;
ll a[N];
ll sum[N<<2];
ll mx[N<<2];
ll mn[N<<2];
ll lazy[N<<2];
inline ll divide(ll x,ll y)
{
return floor((double)x/y);
}
inline void push_up(int o)
{
sum[o]=sum[lc]+sum[rc];
mx[o]=max(mx[l