【题解】poj3254 状压DP

12 篇文章 0 订阅

题目链接
思路摘抄自大佬博客
状态可由二进制表示,只需将每种状态转化为相应的十进制数,即可只用一个数字,就能表示某一种状态
以dp[i][state(j)]来表示对于前i行,第i行采用第j种状态时可以得到的可行方案总数!
例如:回头看样例数据,dp[2][1]即代表第二行使用第2中状态(0 1 0)时可得的方案数,即为4;
那么,可得出状态转移方程为:
dp[i][state(j)]=dp[i-1][state(k1)]+dp[i-1][state(k2)]+……+dp[i-1][state(kn)](kn即为上一行可行状态的编号,上一行共有n种可行状态)
最终ans=dp[m][state(k1)]+dp[m][state(k2)]+……+dp[m][state(kn)]; (kn即为最后一行(第m行)可行状态的编号)

//状压DP
#include<cstdio>
#include<cstring>
using namespace std;
#define mod (int)1e8
int M,N,top=0;
//top表示每行最多的状态数
int state[600],num[110];
//state存放每行所有的可行状态
int dp[20][600];
//dp[i][j]:对于前i行数据,每行有前j种可能状态时的解
int cur[20];
//cur[i]表示第i行整行的情况
inline bool ok(int x)//判断x状态是否可行 
{
    if(x&x<<1)return false;//若存在相邻两个格子都为1,则该状态不可行
    return true; 
}
void init()//遍历所有可能的状态 
{
    top=0;
    int total=1<<N;//遍历状态的上界
    for(int i=0;i<total;i++)
    if(ok(i))state[++top]=i; 
}
inline bool fit(int x,int k)//判断状态x与第k行的实际状态的逆是否有重合 
{
    if(x&cur[k])return false;//若有重合即x不符合要求
    return true; 
}
int main()
{
    //freopen("in.txt","r",stdin);
    while(scanf("%d%d",&M,&N)!=EOF)
    {
        init();//遍历所有可能状态 
        memset(dp,0,sizeof(dp));//初始化 
        for(int i=1;i<=M;i++)
        {
            cur[i]=0;
            int num;
            for(int j=1;j<=N;j++)//输入时按位存储,cur[i]表示第i行整行的情况,每次改变该数字的二进制表示一位 
            {
                scanf("%d",&num);//表示第i行第j列的情况(0或1) 
                if(num==0)//若该格为0
                cur[i]+=(1<<(N-j));//则将该位置为1(以相反方式存储,1表示不可放牧)
            }
        }
        for(int i=1;i<=top;i++)
        if(fit(state[i],1))//判断所有可能状态与第一行的实际状态的逆是否有重合 
        dp[1][i]=1;
//状态转移过程中,dp[i][k]=∑dp[i-1][j](j为符合条件的所有状态)
        for(int i=2;i<=M;i++)//i索引第2行到第M行 
        for(int k=1;k<=top;k++)//该循环针对所有可能的状态,找出一组与i第i行相符的state[k] 
        {
            if(!fit(state[k],i))continue;//判断是否符合第i行实际情况
            for(int j=1;j<=top;j++)//找到state[k]后,再找一组与第i-1行符合,且与第i行(state[i])不冲突的状态state[j]
            {
                if(!fit(state[j],i-1))continue;//判断是否符合第i-1行实际情况
                if(state[k]&state[j])continue;//判断是否与第i行冲突
                dp[i][k]=(dp[i][k]+dp[i-1][j])%mod;//若以上皆可通过,则将j累加到k上 
            } 
        }
        int ans=0;
        for(int i=1;i<=top;i++)//累加最后一行所有可能状态的值 
        ans=(ans+dp[M][i])%mod;
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值