1011 A+B 和 C (15 分)
给定区间 [ − 2 31 , 2 31 ] [-2^{31},2^{31}] [−231,231]内的 3 个整数 A、B 和 C,请判断 A+B 是否大于 C。
输入格式:
输入第 1 行给出正整数 T (≤10),是测试用例的个数。随后给出 T 组测试用例,每组占一行,顺序给出 A、B 和 C。整数间以空格分隔。
输出格式:
对每组测试用例,在一行中输出 Case #X: true 如果 A+B>C,否则输出 Case #X: false,其中 X 是测试用例的编号(从 1 开始)。
输入样例:
4
1 2 3
2 3 4
2147483647 0 2147483646
0 -2147483648 -2147483647
输出样例:
Case #1: false
Case #2: true
Case #3: true
Case #4: false
题解
这个题直接long long
类型进行运算就能解决。
鄙人傻逼到用大数运算来写加减法,写完看了一下网上例程发现直接出结果。。。人都傻了。。
还是对各种数据的边界问题不敏感。
常用数字类型简介(原文链接)
数字类型 | 位数 | 字节数 | 范围(整数) | 范围(指数) | 备注 |
---|---|---|---|---|---|
short | 16 | 2 | -32768 ~ 32767 | − 2 15 -2^{15} −215 ~ 2 15 − 1 2^{15}-1 215−1 | 少16位 |
int | 32 | 4 | -2147483648 ~ 2147483647 | − 2 31 -2^{31} −231 ~ 2 31 − 1 2^{31}-1 231−1 | >=short |
long | 32 | 4 | -2147483648 ~ 2147483647 | − 2 31 -2^{31} −231 ~ 2 31 − 1 2^{31}-1 231−1 | 至少32位,>=int |
long long | 64 | 8 | -9223372036854775808 ~ 9223372036854775807 | − 2 63 -2^{63} −263 ~ 2 63 − 1 2^{63}-1 263−1 | 至少64位,>=long |
unsigned short | 16 | 2 | 0 ~ 65535 | 0 0 0 ~ 2 16 2^{16} 216 | |
unsigned int | 32 | 4 | 0 ~ 4294967295 | 0 0 0 ~ 2 32 2^{32} 232 | |
unsigned long | 32 | 4 | 0 ~ 4294967295 | 0 0 0 ~ 2 32 2^{32} 232 | |
unsigned long long | 64 | 8 | 18446744073709551615 | 0 0 0 ~ 2 64 2^{64} 264 | |
float | 32 | 4 | 1.17549e-38 ~ 3.40282e+38 | ||
double | 64 | 8 | 2.22507e-308 ~ 1.79769e+308 | ||
long double | 64 | 8 | 2.22507e-308 ~ 1.79769e+308 | 精度不低于double,IEEE754标准为128位,实际由编译器和硬件平台决定 |
在处理这类题目的时候记得看清边界。。
AC例程
#include<iostream>
using namespace std;
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("in.txt","r",stdin);
#endif
int n,j;
long a,b,c;
cin>>n;
for(j=1;j<=n;j++)
{
cin>>a>>b>>c;
cout<<"Case #"<<j<<": ";
if((a+b)>c)cout<<"true"<<endl;
else cout<<"false"<<endl;
}
return 0;
}