伽马函数公式 ∫x^ne^{-x}dx=n!

由展开 e = 1 + 1 1 ! + 1 2 ! + 1 3 ! . . . 1 e = 1 + 1 1 ! − 1 2 ! − 1 3 ! . . . e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}...\\ \\\frac1 e=1+\frac{1}{1!}-\frac{1}{2!}-\frac{1}{3!}... e=1+1!1+2!1+3!1...e1=1+1!12!13!1...
数学神仙欧拉借助极限 lim ⁡ x → ∞ x ! ( x + 1 ) n ( x + n ) ! = 1 \lim_{x \to \infty }\frac{x!(x+1)^ n}{(x+n)!}=1 xlim(x+n)!x!(x+1)n=1写出来如下积分,伽马函数: Γ ( n ) = ∫ 0 ∞ x n − 1 e − x   d x \Gamma(n)=\int _ 0 ^ \infty \mathrm x^{ n-1}{ e } ^ { -x } \,\mathrm { d } x Γ(n)=0xn1exdx
其存在如下规律:
Γ ( 1 ) = 1 Γ ( n + 1 ) = n Γ ( n ) Γ ( n ) = ( n − 1 ) ! \Gamma(1)=1\\ \Gamma(n+1)=n\Gamma(n)\\ \Gamma(n)=(n-1)! Γ(1)=1Γ(n+1)=nΓ(n)Γ(n)=(n1)!
因此伽玛函数公式有:
Γ ( n + 1 ) = ∫ 0 ∞ x n e − x   d x = n ! \Gamma(n+1)=\int _ 0 ^ \infty \mathrm x^{ n}{ e } ^ { -x } \,\mathrm { d } x = n! Γ(n+1)=0xnexdx=n!


其按照阶乘的方式发展,结果的简单推导如下: Γ ( n + 1 ) = ∫ 0 ∞ x n e − x d x = [ − x n e − x ] 0 ∞ + ∫ 0 ∞ n x n − 1 e − x d x = lim ⁡ x → ∞ ( − x n e − x ) − ( 0 e − 0 ) + n ∫ 0 ∞ x n − 1 e − x d x = n ∫ 0 ∞ x n − 1 e − x   d x = n Γ ( n ) \begin{aligned} \Gamma(n+1) &=\int_{0}^{\infty} x^{n} e^{-x} d x \\ &=\left[-x^{n} e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} n x^{n-1} e^{-x} d x \\ &=\lim _{x \rightarrow \infty}\left(-x^{n} e^{-x}\right)-\left(0 e^{-0}\right)+n \int_{0}^{\infty} x^{n-1} e^{-x} d x \\ &=n\int _ 0 ^ \infty \mathrm x^{n-1}{ e } ^ { -x } \,\mathrm { d } x\\ &=n\Gamma(n) \end{aligned} Γ(n+1)=0xnexdx=[xnex]0+0nxn1exdx=xlim(xnex)(0e0)+n0xn1exdx=n0xn1exdx=nΓ(n)

  • 7
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据题意,我们需要求出Z=X^2-2XY的概率密度函数,其中Y=arccos(y)。 首先,我们考虑Y的取值范围。因为arccos(y)的取值范围是[0,π],所以Y的取值范围也是[0,π]。 接下来,我们使用变量替换法来求Z的概率密度函数。令U=X-Y和V=X,则X=(U+V)/2,Y=(V-U)/2。由此可得: Z = (U+V)^2/4 - 2UV/4 = U^2/4 + UV/2 + V^2/4 接下来,我们需要求出U和V的联合概率密度函数fUV(u,v),然后根据变量替换法求出Z的概率密度函数fZ(z)。 因为U=X-Y和V=X是线性变量关系,所以它们的联合概率密度函数可以通过求解其雅可比行列式来得到: fUV(u,v) = fXY((u+v)/2,(v-u)/2) * |J| 其中,fXY(x,y)是X和Y的概率密度函数,J是雅可比行列式,它的值为: J = |dx/du dx/dv| |dy/du dy/dv| = |-1/2 1/2 | |1/2 1/2 | 所以, |J| = |-1/2 1/2| = 1/2 接下来,我们需要求解fXY(x,y),它的概率密度函数为: fXY(x,y) = fX(x) * fY(y) 其中,X和Y是独立的随机变量,且X是一个标准正态分布,Y的概率密度函数为: fY(y) = f(arccos(y)) * |dy/dy'| 其中,f(arccos(y))是Y=arccos(y)的概率密度函数,|dy/dy'|是雅可比行列式,它的值为: |dy/dy'| = |-sin(arccos(y))| = |-√(1-y^2)| = √(1-y^2) 因此,Y的概率密度函数为: fY(y) = f(arccos(y)) * √(1-y^2) 将fX(x)和fY(y)代入fXY(x,y)中,可得: fXY(x,y) = (1/2π) * e^(-x^2/2) * f(arccos(y)) * √(1-y^2) 接下来,将fXY(x,y)和|J|代入fUV(u,v)中,可得: fUV(u,v) = (1/4π) * e^(-u^2/4-v^2/4+uv/2) * √(1-((v-u)/2)^2) 最后,我们使用变量替换法求出Z的概率密度函数fZ(z)。令z=u^2/4+uv/2+v^2/4,则: u = √(4z-v^2) - v v = V J = |du/dz du/dv| |dv/dz dv/dv| 我们可以通过计算J的逆矩阵来求出du/dz、du/dv、dv/dz和dv/dv的值。最终,我们得到: fZ(z) = (1/2π) * ∫(从0到π) e^(-u^2/4-v^2/4+uv/2) * √(1-((v-u)/2)^2) * |J| * dv 其中,|J|的值为1/2,dv的积分范围为0到π。将u和v代入上式,可得: fZ(z) = (1/4π) * ∫(从0到π) e^(-(u^2+2uv+v^2)/4) * √(4z-v^2) * dv 这个积分式可以通过换元法将其化简为高斯函数的形式,最终得到: fZ(z) = (1/2π√z) * ∫(从0到π) e^(-(v^2-2z)/4) * √(4z-v^2) * dv 令t=v/√(4z),则: fZ(z) = (1/8πz) * ∫(从0到√(4z)/2) e^(-t^2) * √(1-t^2) * dt 这个积分式可以通过换元法将其化简为高斯函数和伽马函数的形式,最终得到: fZ(z) = (1/8z^(3/2)) * (2-π/2*√(π) * erf(√z/2) - √(π) * e^(-z/4) * γ(3/2, z/4)) 其中,erf(x)是误差函数,γ(a,x)是不完全伽马函数。因此,Z的概率密度函数为: fZ(z) = (1/8z^(3/2)) * (2-π/2*√(π) * erf(√z/2) - √(π) * e^(-z/4) * γ(3/2, z/4)),其中z属于[0,∞)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值