【概率论】一维随机变量

本文详细介绍了概率论中的一维随机变量,包括离散型和连续型。离散型随机变量涵盖了(0-1)分布、二项分布、泊松分布和几何分布;而连续型则涉及均匀分布、指数分布和正态分布。通过对分布函数的讨论,证明了连续型随机变量的分布函数连续,并展示了各类分布的数学期望和方差。
摘要由CSDN通过智能技术生成

未经同意,禁止转载

本文为本人在校学习笔记,若有疑问或谬误,欢迎探讨、指出。

【概率论】一维随机变量

  • 离散型:有限个 / 可列无限多个取值
  • 连续型:分布函数是由一个非负可积函数变上限积分得到的(易知是连续的)
  • 混合型:不是离散也不是连续型

证明分布函数右连续:

海涅定理 + 极限

证明 P { x = a } = F ( a − 0 ) P\{x=a\} = F(a-0) P{ x=a}=F(a0)

  • 证明:连续型随机变量的分布函数一定连续

    转化为证明由可积函数(概率密度)$f(x) $ 的变上限积分 ∫ − ∞ x f ( x ) d x \int_{-\infty}^xf(x) \mathrm{d}x xf(x)dx 一定连续

lim ⁡ δ → 0 ∫ − ∞ x + δ f ( x ) d x ⇒ lim ⁡ δ → 0 ( ∫ − ∞ x f ( x ) d x + ∫ x x + δ f ( x ) d x ) only need to prove  lim ⁡ δ → 0 ∫ x x + δ f ( x ) d x = 0 \begin{aligned} & \lim_{\delta\to0} \int_{-\infty}^{x+\delta}f(x)\mathrm{d}x \\ & \Rightarrow \lim_{\delta\to0} (\int_{-\infty}^{x}f(x)\mathrm{d}x + \int_{x}^{x+\delta}f(x)\mathrm{d}x) \\ \quad \\ & \text{only need to prove } \lim_{\delta\to0}\int_{x}^{x+\delta}f(x)\mathrm{d}x = 0\\ \end{aligned} \\ δ0limx+δf(x)dxδ0lim(xf(x)dx+xx+δf(x)dx)only need to prove δ0limxx+δf(x)dx=0

f ( x )  is integrabel, so it is bounded ∃ M ,  s.t. − M < f ( x ) < M ∵ − M δ ≤ ∫ x x + δ f ( x ) d x ≤ M δ ⇒ lim ⁡ δ → 0 − M δ ≤ lim ⁡ δ → 0 ∫ x x + δ f ( x ) d x ≤ lim ⁡ δ → 0 M δ ⇒ 0 ≤ lim ⁡ δ → 0 ∫ x x + δ f ( x ) d x ≤ 0 ∴ Squeeze Theorem:  lim ⁡ δ → 0 ∫ x x + δ f ( x ) d x = 0 f(x)\text{ is integrabel, so it is bounded} \\ \exists M, \text{ s.t.}-M < f(x) < M \\ \begin{aligned} & \because -M\delta \le \int_{x}^{x+\delta}f(x)\mathrm{d}x \le M\delta \\ & \Rightarrow \lim_{\delta\to0} -M\delta \le \lim_{\delta\to0} \int_{x}^{x+\delta}f(x)\mathrm{d}x \le \lim_{\delta\to0} M\delta \\ & \Rightarrow 0 \le \lim_{\delta\to0} \int_{x}^{x+\delta}f(x)\mathrm{d}x \le 0 \\ & \therefore \text{Squeeze Theorem: } \lim_{\delta\to0} \int_{x}^{x+\delta}f(x)\mathrm{d}x = 0 \\ \end{aligned} \\ f(x) is integrabel, so it is boundedM, s.t.M<f(x)<MMδxx+δf(x)dxMδδ0limMδδ0limxx+δf(x)dxδ0limMδ0δ0limxx+δf(x)dx0Squeeze Theorem: δ0limxx+δf(x)dx=0

lim ⁡ δ → 0 ∫ − ∞ x + δ f ( x ) d x = ∫ − ∞ x f ( x ) d x , ∫ − ∞ x f ( x ) d x  is continuous \lim_{\delta\to0} \int_{-\infty}^{x+\delta}f(x)\mathrm{d}x = \int_{-\infty}^{x}f(x)\mathrm{d}x, \\ \int_{-\infty}^{x}f(x)\mathrm{d}x\text{ is continuous} δ0limx+δf(x)dx=xf(x)dx,xf(x)dx is continuous

离散型

(0-1)分布 Bernoulli Distribution

(两点分布、伯努利分布) X ∼ B ( 1 , p ) X \sim B(1, p) XB(1,p)

可以视为仅重复一次的伯努利试验

  • 随机变量
    X ( e ) = { 0 , when  e = e 1 , 1 , when  e = e 2 , X(e) = \begin{cases} 0, & \text{when } e=e_1, \\ 1, & \text{when } e=e_2, \\ \end{cases} X(e)={ 0,1,when e=e1,when e=e2,

  • 分布律
    P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 P\{X = k\} = p^k (1-p)^{1-k},\quad k=0,1 P{ X=k}=pk(1p)1k,k=0,1

  • 数字特征

    • 数学期望
      E ( X ) = 1 ⋅ p + 0 ⋅ ( 1 − p ) = p E(X) = 1\cdot p + 0\cdot (1-p) = p E(X)=1p+0(1p)=p

    • 方差
      D ( X ) = E ( X 2 ) − E 2 ( X ) = p − p 2 ⇒ D ( X ) = p ( 1 − p ) D(X) = E(X^2) - E^2(X) = p - p^2 \\ \Rightarrow D(X) = p(1-p) D(X)=E(X2)E2(X)=pp2D(X)=p(1p)

二项分布 Binomial Distribution

X ∼ B ( n , p ) X \sim B(n, p) XB(n,p)

n重伯努利试验中 A A A 发生 X X X 次的概率服从二项分布

  • 伯努利试验:每次实验只有两种结果( A , A ‾ A, \overline{A} A,A),则称该试验为Bernoulli试验

  • 分布律

    A A A 的成功概率为 p p p, 则有
    P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 2 , 3 , . . . , n P\{X=k\} = C_n^k p^k (1-p)^{n-k}, \quad k=0,2,3,...,n P{ X=k}=Cnkpk(1p)nk,k=0,2,3,...,n

  • 趋势

    image-20201117120718914
  • 数字特征

    • 数学期望
      E ( X ) = n p E(X) = np E(X)=np
      推导:

    X i = { 1 , 第i次试验成功 0 , 第i次试验失败 X_i = \begin{cases} 1, & \text{第i次试验成功} \\ 0, & \text{第i次试验失败} \\ \end{cases} Xi={ 1,0,i次试验成功i次试验失败

    X = ∑ i = 1 n X i X = \sum_{i=1}^n X_i X=i=1nXi

    E ( X ) = E ( ∑ i = 1 n X i ) = ∑ i = 1 n E ( X i ) = ∑ i = 1 n X i ⇒ E ( X ) = n p E(X) = E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i) = \sum_{i=1}^n X_i \\ \Rightarrow E(X) = np E(X)=E(i=1nXi)=i=1nE(Xi)=i=1nXiE(X)=np

    • 方差
      D ( X ) = n p ( 1 − p ) D(X) = np(1-p) D(X)=np(1p)
      推导:

      各次伯努利试验之间相互独立,协方差项为0,则
      D ( X ) = D ( ∑ i = 1 n X i ) = ∑ i = 1 n D ( X i ) = n

概率论中的二维随机变量是指由两个随机变量组成的一种数学模型。它可以用来描述两个不同事件之间的关系和相互影响。 以下是一些与二维随机变量相关的重要知识点: 1. 概率密度函数(PDF):对于连续型二维随机变量,概率密度函数描述了其取值的概率分布情况。它可以通过对二维随机变量进行积分来计算概率。 2. 边缘分布:边缘分布指的是二维随机变量中每个单独变量的概率分布。通过边缘分布,可以计算某一个变量的概率,而忽略其他变量的取值情况。 3. 条件分布:条件分布指的是在给定另一个变量取值的条件下,某一个变量的概率分布。条件分布可以用来描述两个变量之间的依赖关系和相互影响。 4. 相关性和独立性:二维随机变量的相关性描述了两个变量之间的线性关系程度,可以通过协方差或相关系数来衡量。如果两个变量相互独立,则它们之间没有任何线性关系。 5. 边缘期望和协方差:边缘期望是指每个变量的期望值,可以用来描述随机变量的平均取值情况。协方差衡量了两个变量之间的总体线性关系,可以通过协方差矩阵来表示。 6. 线性变换和线性组合:对二维随机变量进行线性变换或线性组合可以得到新的随机变量。这些新的变量可能具有特定的概率分布和相关性。 这些是概率论中关于二维随机变量的一些重要知识点,希望能对你有所帮助。如果你还有其他问题,请继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值