更新:推导已补充
离散型分布
两点分布 X∼B(1,p)X \sim B(1,p)X∼B(1,p)
随机变量X只能取值0和1,且服从参数为P的(0-1)分布,对应一次伯努利试验. (相当于随机变量取值限制的二项分布)
其分布律为:
P{ X=k}=pk(1−p)1−k,k=0,1; P\{X=k\} = p^k (1-p)^{1-k}, k=0,1; \ \ \ \ \ P{ X=k}=pk(1−p)1−k,k=0,1;
其数学期望为: E(X)=pE(X) = pE(X)=p
方差为: D(X)=p(1−p)D(X) = p(1-p)D(X)=p(1−p)
推导:
E(X)=0+1⋅p1(1−p)0=pE(X) = 0 + 1\cdot p^1(1-p)^0 = pE(X)=0+1⋅p1(1−p)0=p
D(X)=E(x2)−[E(x)]2==(1−p)(0−p)2+p(1−p)2=p−p2D(X) = E(x^2) - [E(x)]^2 ==(1-p)(0-p)^2+p(1-p)^2 = p - p^2D(X)=E(x2)−[E(x)]2==(1−p)(0−p)2+p(1−p)2=p−p2
二项分布 X∼B(n,p)X \sim B(n,p)X∼B(n,p)
随机变量X的所有可能取值为: 0,1,2...,n 0,1,2...,n 0,1,2...,n ,而各取值的概率为:
P{ X=k}=Cnkpkqn−k, k=0,1,2,...,nP\{X=k\} = C_n^k p^k q^{n-k}, \;\; k = 0,1,2,...,nP{ X=k}=Cnkpkqn−k,k=0,1,2,...,n
其中, 0
其数学期望为: E(X)=npE(X) = npE(X)=np
方差为: D(X)=np(1−p)D(X) = np(1-p)D(X)=np(1−p)
推导:
KaTeX parse error: Mismatch: \begin{aligned} matched by \end{align} at position 193: …+p)^{n-1} = np \̲e̲n̲d̲{align}
E(X2)=∑k=0nk2Cnkpk(1−p)n−k=np∑k=1nkCn−1k−1pk−1(1−p)n−k=np∑k=0n−1(k+1)Cn−1kpk(1−p)n−k−1=np∑k=1n−1kCn−1kpk(1−p)n−k+np=n(n−1)p2∑k=1n−1Cn−2k−1pk−1(1−p)n−1−k=n(n−1)p2+npD(X)=E(X2)−E2(X)=np[(n−1)p+1]−n2p2=np(1−p)\begin{aligned} E(X^2) &= \sum^n_{k=0} k^2 C_n^k p^k(1-p)^{n-k} \\ &=np\sum^n_{k=1} k C_{n-1}^{k-1} p^{k-1}(1-p)^{n-k} =np\sum^{n-1}_{k=0} (k+1) C_{n-1}^{k} p^k(1-p)^{n-k-1}\\ &= np\sum^{n-1}_{k=1}kC^k_{n-1}p^k(1-p)^{n-k}+np\\ &= n(n-1)p^2\sum^{n-1}_{k=1}C^{k-1}_{n-2}p^{k-1}(1-p)^{n-1-k}=n(n-1)p^2+np \\ D(X) &= E(X^2) - E^2(X)= np[(n-1)p+1] - n^2p^2= np(1-p) \end{aligned}E(X2)D(X)=k=0∑nk2Cnkpk(1−p)n−k=npk=1∑nkCn−1k−1pk−1(1−p)n−k=npk=0∑n−1(k+1)Cn−1kpk(1−p)n−k−1=npk=1∑n−1kCn−1kpk(1−p)n−k+np=n(n−1)p2k=1∑n−1Cn−2k−1pk−1(1−p)n−1−k=n(n−1)p2+np=E(X2)−E2(X)=np[(n−1)p+1]−n2p2=np(1−p)
由于二项分布对应n重独立的伯努利试验,相当于n个两点分布的叠加,因此有:
EB(X)=E0−1(nX)=nE0−1(X)=npE_B(X) = E_{0-1}(nX) = nE_{0-1}(X)=npEB(X)=E0−1(nX)=nE0−1(X)=np
DB(X)=D0−1(nX)=np(1−p)D_B(X) = D_{0-1}(nX)=np(1-p)DB(X)=D0−1(nX)=np(1−p)
几何分布 X∼G(p)X\sim G(p)X∼G(p)
分布律为:
P{ X=k}=p(1−q)k−1,k=1,2,3...,p∈(0,1]P\{X=k\} = p(1-q)^{k-1}, k=1,2,3..., p\in (0,1]P{ X=k}=p(1−q)k−1,k=1,2,3...,p∈(0,1]
其数学期望与方差为:
E(X)=1p, D(X)=1−pp2E(X) = \frac1p,\ \ \ D(X) = \frac{1-p}{p^2}E(X)=p1, D(X)=p21−p
推导<1>:
E(X)=limn→∞∑k=1nkp(1−p)k−1, (1−p)E(X)=limn→∞∑k=1nkp(1−p)k⇒pE(X)=limn→∞[p∑k=1n[(k−1)(1−p)k−1−k(1−p)k]+p∑k=1n(1−p)k−1]E(X)=limn→∞[−n(1−p)n+(1−p)n−1(1−p)−1]=limn→∞1p[1−(1−p)n(1+np)]=1p\begin{aligned} &E(X)=\lim_{n\to \infty}\sum^n_{k=1}kp(1-p)^{k-1}, \ \ (1-p)E(X)=\lim_{n\to \infty}\sum^n_{k=1}kp(1-p)^{k }\\ &\Rightarrow pE(X)= \lim_{n\to \infty}[p\sum^n_{k=1}[(k-1)(1-p)^{k-1} -k(1-p)^k]+p\sum^n_{k=1}(1-p)^{k-1}] \\ &E(X)=\lim_{n\to \infty}[-n(1-p)^n+\frac{(1-p)^n-1}{(1-p)-1}]=\lim_{n\to \infty}\frac1p [1-(1-p)^n(1+np)] = \frac1p \end{aligned}E(X)=n→∞limk=1∑nkp(1−p)k−1, (1−p)E(X)=n→∞limk=1∑nkp(1−p)k⇒pE(X)=n→∞lim[pk=1∑n[(k−1)(1−p)k−1−k(1−p)k]+pk=1∑n(1−p)k−1]E(X)=n→∞lim[−n(1−p)n+(1−p)−1(1−p)n−1]=n→∞limp1[1−(1−p)n(1+np)]=p1
求期望过程的最后一步要注意一个推导:
$$p\in (0,1], \lim_{n\to \infty}(1-p)^n(1+np)\ =\lim_{n\to \infty}e^{n\ln(1-p)+\ln(1+np)}\leq \lim_{n\to \infty}e^{n\ln(1-p)+np}= \lim_{n\to \infty}e^{n[ln(1-p)+p]}=0 \$$
虽然结果显而易见,但是这里不是无穷小极限,不能用等价洛必达求极限那一套。当然,使用级数计算过程更简单<2>: E(X)=∑k=1∞kp(1−p)k−1=p(∑k=1∞−(1−p)k)′=p(−1−p1−(1−p))′=1pE(X)=\sum^\infty_{k=1}kp(1-p)^{k-1} = p(\sum^\infty_{k=1}-(1-p)^k)'=p(-\frac{1-p}{1-(1-p)})' = \frac1pE(X)=k=1∑∞kp(1−

本文总结了常见的随机变量分布,包括离散型的两点分布、二项分布、几何分布、泊松分布和超几何分布,以及连续型的均匀分布、指数分布、正态分布和柯西分布。探讨了这些分布的数学期望和方差,并提供了关键的推导过程,是理解概率论中随机变量分布的良好参考资料。
最低0.47元/天 解锁文章
995

被折叠的 条评论
为什么被折叠?



