常见随机变量分布总结

本文总结了常见的随机变量分布,包括离散型的两点分布、二项分布、几何分布、泊松分布和超几何分布,以及连续型的均匀分布、指数分布、正态分布和柯西分布。探讨了这些分布的数学期望和方差,并提供了关键的推导过程,是理解概率论中随机变量分布的良好参考资料。
摘要由CSDN通过智能技术生成

更新:推导已补充

离散型分布

两点分布 X ∼ B ( 1 , p ) X \sim B(1,p) XB(1,p)

随机变量X只能取值0和1,且服从参数为P的(0-1)分布,对应一次伯努利试验. (相当于随机变量取值限制的二项分布)

其分布律为:

P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 ;       P\{X=k\} = p^k (1-p)^{1-k}, k=0,1; \ \ \ \ \ P{ X=k}=pk(1p)1k,k=0,1;     

其数学期望为: E ( X ) = p E(X) = p E(X)=p

方差为: D ( X ) = p ( 1 − p ) D(X) = p(1-p) D(X)=p(1p)

推导:

E ( X ) = 0 + 1 ⋅ p 1 ( 1 − p ) 0 = p E(X) = 0 + 1\cdot p^1(1-p)^0 = p E(X)=0+1p1(1p)0=p

D ( X ) = E ( x 2 ) − [ E ( x ) ] 2 = = ( 1 − p ) ( 0 − p ) 2 + p ( 1 − p ) 2 = p − p 2 D(X) = E(x^2) - [E(x)]^2 ==(1-p)(0-p)^2+p(1-p)^2 = p - p^2 D(X)=E(x2)[E(x)]2==(1p)(0p)2+p(1p)2=pp2

二项分布 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)

随机变量X的所有可能取值为: 0 , 1 , 2... , n 0,1,2...,n 0,1,2...,n ,而各取值的概率为:

P { X = k } = C n k p k q n − k ,      k = 0 , 1 , 2 , . . . , n P\{X=k\} = C_n^k p^k q^{n-k}, \;\; k = 0,1,2,...,n P{ X=k}=Cnkpkqnk,k=0,1,2,...,n

其中, 0

其数学期望为: E ( X ) = n p E(X) = np E(X)=np

方差为: D ( X ) = n p ( 1 − p ) D(X) = np(1-p) D(X)=np(1p)

推导:

KaTeX parse error: Mismatch: \begin{aligned} matched by \end{align} at position 193: …+p)^{n-1} = np \̲e̲n̲d̲{align}

E ( X 2 ) = ∑ k = 0 n k 2 C n k p k ( 1 − p ) n − k = n p ∑ k = 1 n k C n − 1 k − 1 p k − 1 ( 1 − p ) n − k = n p ∑ k = 0 n − 1 ( k + 1 ) C n − 1 k p k ( 1 − p ) n − k − 1 = n p ∑ k = 1 n − 1 k C n − 1 k p k ( 1 − p ) n − k + n p = n ( n − 1 ) p 2 ∑ k = 1 n − 1 C n − 2 k − 1 p k − 1 ( 1 − p ) n − 1 − k = n ( n − 1 ) p 2 + n p D ( X ) = E ( X 2 ) − E 2 ( X ) = n p [ ( n − 1 ) p + 1 ] − n 2 p 2 = n p ( 1 − p ) \begin{aligned} E(X^2) &= \sum^n_{k=0} k^2 C_n^k p^k(1-p)^{n-k} \\ &=np\sum^n_{k=1} k C_{n-1}^{k-1} p^{k-1}(1-p)^{n-k} =np\sum^{n-1}_{k=0} (k+1) C_{n-1}^{k} p^k(1-p)^{n-k-1}\\ &= np\sum^{n-1}_{k=1}kC^k_{n-1}p^k(1-p)^{n-k}+np\\ &= n(n-1)p^2\sum^{n-1}_{k=1}C^{k-1}_{n-2}p^{k-1}(1-p)^{n-1-k}=n(n-1)p^2+np \\ D(X) &= E(X^2) - E^2(X)= np[(n-1)p+1] - n^2p^2= np(1-p) \end{aligned} E(X2)D(X)=k=0nk2Cnkpk(1p)nk=npk=1nkCn1k1pk1(1p)nk=npk=0n1(k+1)Cn1kpk(1p)nk1=npk=1n1kCn1kpk(1p)nk+np=n(n1)p2k=1n1Cn2k1pk1(1p)n1k=n(n1)p2+np=E(X2)E2(X)=np[(n1)p+1]n2p2=np(1p)

由于二项分布对应n重独立的伯努利试验,相当于n个两点分布的叠加,因此有:

E B ( X ) = E 0 − 1 ( n X ) = n E 0 − 1 ( X ) = n p E_B(X) = E_{0-1}(nX) = nE_{0-1}(X)=np EB(X)=E01(nX)=nE01(X)=np

D B ( X ) = D 0 − 1 ( n X ) = n p ( 1 − p ) D_B(X) = D_{0-1}(nX)=np(1-p) DB(X)=D01(nX)=np(1p)

几何分布 X ∼ G ( p ) X\sim G(p) XG(p)

分布律为:

P { X = k } = p ( 1 − q ) k − 1 , k = 1 , 2 , 3... , p ∈ ( 0 , 1 ] P\{X=k\} = p(1-q)^{k-1}, k=1,2,3..., p\in (0,1] P{ X=k}=p(1q)k1,k=1,2,3...,p(0,1]

其数学期望与方差为:

E ( X ) = 1 p ,     D ( X ) = 1 − p p 2 E(X) = \frac1p,\ \ \ D(X) = \frac{1-p}{p^2} E(X)=p1,   D(X)=p21p

推导<1>:

E ( X ) = lim ⁡ n → ∞ ∑ k = 1 n k p ( 1 − p ) k − 1 ,    ( 1 − p ) E ( X ) = lim ⁡ n → ∞ ∑ k = 1 n k p ( 1 − p ) k ⇒ p E ( X ) = lim ⁡ n → ∞ [ p ∑ k = 1 n [ ( k − 1 ) ( 1 − p ) k − 1 − k ( 1 − p ) k ] + p ∑ k = 1 n ( 1 − p ) k − 1 ] E ( X ) = lim ⁡ n → ∞ [ − n ( 1 − p ) n + ( 1 − p ) n − 1 ( 1 − p ) − 1 ] = lim ⁡ n → ∞ 1 p [ 1 − ( 1 − p ) n ( 1 + n p ) ] = 1 p \begin{aligned} &E(X)=\lim_{n\to \infty}\sum^n_{k=1}kp(1-p)^{k-1}, \ \ (1-p)E(X)=\lim_{n\to \infty}\sum^n_{k=1}kp(1-p)^{k }\\ &\Rightarrow pE(X)= \lim_{n\to \infty}[p\sum^n_{k=1}[(k-1)(1-p)^{k-1} -k(1-p)^k]+p\sum^n_{k=1}(1-p)^{k-1}] \\ &E(X)=\lim_{n\to \infty}[-n(1-p)^n+\frac{(1-p)^n-1}{(1-p)-1}]=\lim_{n\to \infty}\frac1p [1-(1-p)^n(1+np)] = \frac1p \end{aligned} E(X)=nlimk=1nkp(1p)k1,  (1p)E(X)=nlimk=1nkp(1p)kpE(X)=nlim[pk=1n[(k1)(1p)k1k(1p)k]+pk=1n(1p)k1]E(X)=nlim[n(1p)n+(1p)1(1p)n1]=nlimp1[1(1p)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值