Generative Adversarial Nets(2014)
简述:
目前,较为成功的还是判别模型。在生成模型方面由于概率计算等困难,未获得较大的成功。本文提出的GAN网络不需要马尔科夫链和推断,只需要梯度下降。在GAN 网络中,部分为生成网络 (Generative Network),此部分负责生成尽可能地以假乱真的样本,这部分被成为生成器 (Generator);另一部分为判别网络 (Discriminative Network), 此部分负责判断样本是真实的,还是由生成器生成的,这部分被成为判别器 (Discriminator)。
G在训练过程中的目的是生成尽可能逼真的图片去让判别器判断不了这张图片到底是真实图片还是生成的虚假照片,D在训练过程中的目的就是尽可能取辨别真假图片,所以G是希望是D的犯错率最大化,而D则是希望自己犯错率最小化,二者互为对抗,在竞争中共同进步。理论上这种关系可以达到一个平衡点,即所谓的纳什均衡,也就是说G生成的图片D判别它为真实数据的概率是0.5,也即现在判别器已经无法区分生成器所生成的图片的真假,那么生成器的目的也就达到了,以假乱真了。
但是这个网络存在一个缺陷,G不能频繁更新,以保证D能跟上脚步。
问题or相关工作:
-
GAN网络不需要马尔科夫链和推断,只需要梯度下降,是利用观察法通过生成过程对导数进行反向传播:
-
通过把噪音 Pz(z)加入生成器 G(z;θ