GAN网络概述及LOSS函数详解

Generative Adversarial Nets
上周周报已经写了这篇论文,本周相对GAN网络的LOSS进行进一步的学习和研究。

GAN网络:
在这里插入图片描述
条件:G依照真实图像生成大量的类似图像,D是辨别输入的图像是真实图像还是G生成的虚假图像。
原理:G和D是互相促进的。G的目的是产生的图像让D感到模糊不知道该分成realistic(看起来像是现实的)还是fake(看起来是假的),D的目的是将realistic和fake的图像准确分辨。所以G产生的图像会越来越真,D的辨别能力会越来越强,最终达到一个平衡。这种纳什均衡保证了GAN产生的所有图像都可以与原始图像属于一个类别。
作用:GAN大量用于扩充数据集或者给未标记的数据集打标签等任务上。

一些GAN网络的比较:
1,用于图像生成方面在这里插入图片描述
在这里插入图片描述
2.用于风格迁移
在这里插入图片描述
3.图像还

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值