Generative Adversarial Nets
上周周报已经写了这篇论文,本周相对GAN网络的LOSS进行进一步的学习和研究。
GAN网络:
条件:G依照真实图像生成大量的类似图像,D是辨别输入的图像是真实图像还是G生成的虚假图像。
原理:G和D是互相促进的。G的目的是产生的图像让D感到模糊不知道该分成realistic(看起来像是现实的)还是fake(看起来是假的),D的目的是将realistic和fake的图像准确分辨。所以G产生的图像会越来越真,D的辨别能力会越来越强,最终达到一个平衡。这种纳什均衡保证了GAN产生的所有图像都可以与原始图像属于一个类别。
作用:GAN大量用于扩充数据集或者给未标记的数据集打标签等任务上。
一些GAN网络的比较:
1,用于图像生成方面
2.用于风格迁移
3.图像还