想到缓存技术,大家脑海里肯定会出现redis
试想:如果redis中存放了全量的热点数据,但是由于访问量达到一定级别时频繁查询redis产生大量的网络开销并且影响redis整体性能,这是我们需要怎么办呢?
这时我们可以考虑采用三级缓存的架构,一是使用nginx本地缓存预防redis的一定量高并发压力下撑不住,二是使用jvm本地缓存进一步处理redis缓存雪崩、缓存穿透等常见问题。
三级缓存架构:
nginx本地缓存
- nginx本地缓存,抗的是热数据的高并发访问,一般来说,商品的购买总是有热点的,比如每天购买iphone、nike、海尔等知名品牌的东西的人,总是比较多的
- 这些热数据,利用nginx本地缓存,由于经常被访问,所以可以被锁定在nginx的本地缓存内
- 大量的热数据即经常会访问的数据,就会被保留在nginx本地缓存内,那么对这些热数据的大量访问,就直接走nginx就可以了
那么大量的访问,直接就可以走到nginx就行了,不需要走后续的各种网络开销了
redis分布式大规模缓存
- redis分布式大规模缓存,抗的是很高的离散访问,支撑海量的数据,高并发的访问,高可用的服务
- redis缓存最大量的数据,最完整的数据和缓存,1T+数据;支撑高并发的访问,QPS最高到几十万;可用性,非常好,提供非常稳定的服务
nginx本地内存有限,也就能cache住部分热数据,除了各种iphone、nike等热数据,其他相对不那么热的数据,可能流量会经常走到redis那里 - 利用redis cluster的多master写入,横向扩容,1T+以上海量数据支持,几十万的读写QPS,99.99%高可用性,那么就可以抗住大量的离散访问请求
tomcat jvm堆内存缓存
- tomcat jvm堆内存缓存,主要是抗redis大规模灾难的,作为最后一层防护措施;
- 如果redis出现了大规模的宕机,导致nginx大量流量直接涌入数据生产服务,那么最后的tomcat堆内存缓存至少可以再抗一下,不至于让数据库直接裸奔
- 同时tomcat jvm堆内存缓存,也可以抗住redis没有的少量的部分缓存
总结:
当redis对于超高并发量时出现连接池连接频繁满连接出现连接拒绝、大量消耗网络开销等问题时,这是需要加入nginx本地缓存,存放一些实时性要求不是很高的数据。
例如:商品信息缓存机制
数据库修改-->发送修改数据至kafka-->同步数据到各级缓存中
但是对于类似库存的实时性要求高的数据就不能采用这种方式,因为数据发到kafka,再从kafka中消费需要一定时间,如果遇到网络波动或者消息积压则更为严重。
例如:库存信息缓存机制是:
数据库修改-->redis中同步修改-->发送修改数据至kafka-->jvm堆内存
此时为了保证数据的强一致性,尽量减少redis与数据库同步的时间,所以不采用同步其他缓存增加同步时间。