动态规划——以01背包为例

动态规划

1、题型:动规基础(斐波那契数列、爬楼梯)、背包问题、打家劫舍、股票问题、子序列问题

2、动规5部曲:DP数组含义及下标含义、递推公式、DP数组初始化、遍历顺序、打印DP数组

3、二维数组->滚动数组

4、递推公式:以01背包为例:dp[i][j] = max(dp[i-1][j] + dp[i][j-weight(i)] + value[i]

0-1背包

问题描述:

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放。

举一个例子: 

二维数组

(1)DP数组含义及下标含义

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

(2) 递推公式

由于每种物品仅有一件,可以选择放或不放。那么对于每一件物品dp[i][j] 就有两种情况:

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
  • 所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

(3)dp数组初始化

关于初始化,一定要和dp数组的定义吻合。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略。
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

 此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

(4)遍历顺序

有两个遍历的维度:物品与背包重量。

遍历顺序与递推公式相关。 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

dp[i][j]由上一层和左上角的值共同推导得到,所以要保证最左侧第1列和最上方第1行先被初始化。

而这里无论外循环遍历物品,内循环遍历背包;还是外循环遍历背包,内循环遍历物品都可以实现上述要求。(正序便利,从左往右)

先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    }
}

先遍历背包,再遍历物品,也是可以的!(注意这里使用的二维dp数组) 

/ weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

(5)完整测试代码

#二维DP数组01解决背包问题
def test_2_wei_bag_problem1(bag_size, weight, value): 
	rows, cols = len(weight), bag_size + 1
	dp = [[0 for _ in range(cols)] for _ in range(rows)]
    
	# 初始化dp数组. 
	for i in range(rows): 
		dp[i][0] = 0
	first_item_weight, first_item_value = weight[0], value[0]
	for j in range(1, cols): 	
		if first_item_weight <= j: 
			dp[0][j] = first_item_value

	# 更新dp数组: 先遍历物品, 再遍历背包. 
	for i in range(1, len(weight)): 
		cur_weight, cur_val = weight[i], value[i]
		for j in range(1, cols): 
			if cur_weight > j: # 说明背包装不下当前物品. 
				dp[i][j] = dp[i - 1][j] # 所以不装当前物品. 
			else: 
				# 定义dp数组: dp[i][j] 前i个物品里,放进容量为j的背包,价值总和最大是多少。
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight]+ cur_val)

	print(dp)


if __name__ == "__main__": 
	bag_size = 4
	weight = [1, 3, 4]
	value = [15, 20, 30]
	test_2_wei_bag_problem1(bag_size, weight, value)

 一维DP数组(滚动数组)

由于dp[i][j]的值只用到了当前层的上一层,所以可以只记录上一层的值,而不必把之前所有层的值都记录下来。那就可以用两个长为背包容量bagweight的数组,分别记录上一层和当前层的值,然后没更新一层再让上一层=当前层,即before = now。这也是很多动态规划的常规操作。如“三角形最小路径和”这道题,我在之前的博客里也写过。

https://blog.csdn.net/qq_41973062/article/details/

如果想把2个一维数组降为1个1维数组也不是不可以。也是和“三角形最小路径和”这道题一样,为了避免值覆盖问题,就要倒序遍历而不是正序遍历了。

下面详细分析。

(1)确定dp数组的含义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

(2)dp数组的递推公式

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,求最大价值取二者间的max。

所以递归公式为:(可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。)

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

(3)dp数组初始化

(value为正,可全都初始化为0;只要比最小的value小)

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

(4)dp数组遍历顺序

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

这里和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

(5)完整测试代码

def test_1_wei_bag_problem():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    bag_weight = 4
    # 初始化: 全为0
    dp = [0] * (bag_weight + 1)

    # 先遍历物品, 再遍历背包容量
    for i in range(len(weight)):
        for j in range(bag_weight, weight[i] - 1, -1):
            # 递归公式
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

    print(dp)

test_1_wei_bag_problem()

以上内容感谢代码随想录代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值