题目
给你一个整数数组 arr 和两个整数 k 和 threshold 。
请你返回长度为 k 且平均值大于等于 threshold 的子数组数目。
示例 1:
输入:arr = [2,2,2,2,5,5,5,8], k = 3, threshold = 4
输出:3
解释:子数组 [2,5,5],[5,5,5] 和 [5,5,8] 的平均值分别为 4,5 和 6 。其他长度为 3 的子数组的平均值都小于 4 (threshold 的值)。
示例 2:
输入:arr = [1,1,1,1,1], k = 1, threshold = 0
输出:5
示例 3:
输入:arr = [11,13,17,23,29,31,7,5,2,3], k = 3, threshold = 5
输出:6
解释:前 6 个长度为 3 的子数组平均值都大于 5 。注意平均值不是整数。
示例 4:
输入:arr = [7,7,7,7,7,7,7], k = 7, threshold = 7
输出:1
示例 5:
输入:arr = [4,4,4,4], k = 4, threshold = 1
输出:1
题解
求连续k个数前缀和,如果是题目要求不改变原数组的情况下,新建一个vector即可,如果像本题就直接在原数组中操作即可,不用占多余空间;将sum存进容器中,利用sum[k + i - 1] - sum[i - 1] (第一个平均值除外)
代码
class Solution {
public:
int numOfSubarrays(vector<int>& arr, int k, int threshold) {
int len = arr.size();
int count =0, average = 0;
vector<int> sum(len);
for(int i = 0; i < len; i++){
sum[i] = i > 0 ? sum[i - 1] + arr[i] : arr[0];
}
count = sum[k - 1] / k >= threshold ? count +1 : count;
for(int i = 1; i < len - k + 1; i++){
count = (sum[k + i - 1] - sum[i - 1]) / k >= threshold ? count +1 : count;
}
return count;
}
};