数据采样控制系统的事件触发传输方案与L2控制联合设计

A novel Event-Triggered Transmission Scheme and L 2 \mathcal{L_{2}} L2 Control Co-Design for Sampled-Data Control Systems

1.Event-triggered transmission scheme

Assumption 1: 系统状态按照采样周期h进行周期性采样.采样序列为 S 1 \mathbb{S_{1}} S1={0,h,2h,…,kh}

Assumption 2: 传输事件由事件触发的传输方案来确定,传输序列为 S 2 \mathbb{S_{2}} S2={0, t 1 t_{1} t1h, t 2 t_{2} t2h,…, t k t_{k} tkh} ∈ \in S 1 \mathbb{S_{1}} S1

Assumption 3: 系统的控制输入由zero-order hold(ZOH)产生,保持时间t ∈ \in Ω \Omega Ω ≜ \triangleq [ t k t_{k} tkh+ η 1 \eta_{1} η1, t k + 1 t_{k+1} tk+1h+ η 1 \eta_{1} η1],其中 η 1 \eta_{1} η1是传感器到控制器信道的传输时延。

Remark 1: 不考虑控制器的计算时延和控制器到执行器的传输时延。
 如图1所示,在传感器与控制器之间设置一个事件生成器。在当前采样时刻的和最新采样时刻之间探测采样数据的错误。采样数据是否传输由特殊的阈值来决定。

  定义 t k + 1 t_{k+1} tk+1h= t k t_{k} tkh+ m i n i > 0 min_{i>0} mini>0{(i+1)h| e T e^{T} eT( j k j_{k} jkh) Φ \Phi Φe( j k j_{k} jkh) ≥ \geq δ \delta δ x T x^T xT( t k t_{k} tkh) Φ \Phi Φx( t k t_{k} tkh)}

(1)

  其中 δ \delta δ为0, Φ \Phi Φ为权重矩阵, j k j_{k} jk= t k t_{k} tk+i+1,e( j k j_{k} jkh) ≜ \triangleq x( j k j_{k} jkh)-x( t k t_{k} tkh),只有当 e T e^{T} eT( j k j_{k} jkh) Φ \Phi Φe( j k j_{k} jkh) ≥ \geq δ \delta δ x T x^T xT( t k t_{k} tkh) Φ \Phi Φx( t k t_{k} tkh)时,产生传输事件,ZOH利用最新的采样数据当作执行器的输入。
  图2给出了一个传输的例子,只有当满足公式(1)时,采样数据才能被传输,例如,在0,h,3h,6h,9h时的采样数据被传输,而其余时刻的采样数据未被传输。

2.采样数据错误分析模型

考虑控制系统
x ˙ ( t ) \dot x(t) x˙(t)=Ax(t)+Bu(t)+ B 1 B_{1} B1 ω \omega ω(t)
其中 ω ( t ) \omega(t) ω(t)是外部干扰,x(0)= x 0 x_{0} x0.
对于给定大小的 γ \gamma γ>0和 β \beta β>0,定义表现指标
J \mathcal{J} J= ∫ 0 ∞ \int_{0}^{∞} 0[ β 2 \beta^2 β2 x T ( s ) \mathcal{x}^T(s) xT(s) x ( s ) \mathcal{x}(s) x(s)- γ 2 \gamma^2 γ2 ω T ( s ) \omega^T(s) ωT(s) ω ( s ) \omega(s) ω(s)] d s \mathcal{ds} ds.

设计基于事件触发的状态反馈控制律 u ( t ) \mathcal{u(t)} u(t)= K x ( t k h ) \mathcal{Kx(t_{k}h)} Kx(tkh),使得相应的闭环控制系统渐近稳定,并且对于 x 0 \mathcal{x_{0}} x0=0和所有不为零的 ω \omega ω(t) ∈ \in L 2 \mathcal{L_{2}} L2[0,∞]来说,都有 J \mathcal{J} J<0.
Ω \Omega Ω分为如下时隙 Ω l \Omega_{l} Ωl=[ i k h + η 1 , i k h + h + η 1 \mathcal{i_{k}h+\eta_{1},i_{k}h+h+\eta_{1}} ikh+η1,ikh+h+η1]使得 Ω \Omega Ω= ∪ \cup Ω l \Omega_{l} Ωl, l \mathcal{l} l=0,1,…, t k + 1 − t k − 1 \mathit{t_{k+1}-t{k}-1} tk+1tk1,其中 i k = t k + l \mathit{i_{k}=t_{k}+l} ik=tk+l

定义 η ( t ) \eta(t) η(t)= t − i k h \mathit{t-i_{k}h} tikh, t \mathit{t} t ∈ \in Ω l \Omega_{l} Ωl,可知其为分段线性函数,且满足: η ˙ ( t ) \dot\eta(t) η˙(t)=1, η 1 \eta_{1} η1 ≤ \leq η ( t ) \eta(t) η(t) ≤ \leq h + η 1 h+\eta_{1} h+η1 ≜ \triangleq η 2 \eta_{2} η2,控制律可被表示为:
u ( t ) u(t) u(t)=K[ x ( t − η ( t ) ) x(t-\eta(t)) x(tη(t))- e ( i k h ) e(i_{k}h) e(ikh)]
控制系统表示为:
x ˙ ( t ) \dot x(t) x˙(t) = A x ( t ) Ax(t) Ax(t) + B K x ( t − η ( t ) ) BKx(t-\eta(t)) BKx(tη(t)) - B K e ( i k h ) BKe(i_{k}h) BKe(ikh) + B 1 ω ( t ) B_{1}\omega(t) B1ω(t), t ∈ \in Ω l \Omega_{l} Ωl
定义初始条件 x ( t ) = ϕ ( t ) x(t) = \phi(t) x(t)=ϕ(t), t ∈ \in [- η 2 \eta_{2} η2,0], ϕ ( 0 ) \phi(0) ϕ(0)= x 0 x_{0} x0

3. L 2 \mathcal{L_{2}} L2稳定性分析与控制器设计

结论:

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值