伪装物体检测
文章平均质量分 90
再吃一颗苹果cc
这个作者很懒,什么都没留下…
展开
-
[论文笔记]PreyNet: Preying on Camouflaged Objects
在这项工作中,我们努力寻找准确的COD的答案,并提出了一个PreyNet,该PreyNet模拟了捕食者的两个过程,即初始探测(感觉机制)和捕食者学习(认知机制)。并且我们还使用辅助监督策略. 以前的方法采用比例序列或者特殊的值. 在本文中,我们利用估计的不确定性图为策略解码器中的多层监督提供自适应权重。为了模拟捕食者的学习过程,我们设计了一种双译码器结构,它由一个策略译码器和一个校准译码器组成,一个策略译码器根据经验对某些和不确定区域进行判断,另一个校准译码器在指导下对困难进行学习。原创 2022-11-17 23:27:15 · 750 阅读 · 3 评论 -
论文笔记——C2FNet:Context-aware Cross-level Fusion Network for Camouflaged Object Detection
由于对象与其周围环境之间的低边界对比度,伪装对象检测 (COD) 是一项具有挑战性的任务。 此外,伪装物体的外观变化很大,例如物体大小和形状,增加了准确 COD 的难度。 在本文中,我们提出了一种新颖的上下文感知跨级融合网络(C2F-Net)来解决具有挑战性的 COD 任务。 具体来说,我们提出了一种注意力诱导的跨级融合模块(ACFM),将多级特征与信息注意系数相结合。 然后将融合的特征馈送到提出的双分支全局上下文模块(DGCM),该模块产生多尺度特征表示,以利用丰富的全局上下文信息。原创 2022-04-08 19:08:56 · 3622 阅读 · 0 评论