时序数据库使用教程
文章平均质量分 93
以实战为线索,逐步深入时序数据库DolphinDB开发的各个环节
DolphinDB智臾科技
高吞吐、低延迟、易上手、综合拥有成本低——分布式时序数据库 DolphinDB,金融和物联网领域的最佳选择。
展开
-
DolphinDB 基准性能测试工具:金融模拟数据生成模块合集
测试 DolphinDB 数据库性能时,往往需要快速写入一些测试数据。为了方便大家快速完成简单的基准性能测试,我们提供了金融 Mock 数据生成模块,覆盖了常用的金融数据集,可以满足大家生成模拟数据的需求。此外,由于不同类型的金融数据具有不同的表结构,我们还在该模块中提供了针对不同数据类型的库表创建函数,方便大家更轻松地创建所需的库表。注意:基于本模块生成的模拟数据不具有实际意义,建议仅作读写性能测试和基础功能体验使用哦~原创 2024-09-09 16:22:15 · 1325 阅读 · 0 评论 -
Debezium+Kafka:Oracle 11g 数据实时同步至 DolphinDB 运维手册
之前为大家介绍了如何通过 Debezium 与 Kafka 的组合实现从 Oracle 11g 到 DolphinDB 的数据同步。由于该过程涉及到多个程序的部署,而且具体的 Source 同步任务和 Sink 同步任务还需要额外管理,在运维上具有一定难度,因此我们推出了续篇,详细介绍该数据同步场景的运维操作,欢迎点击了解!原创 2024-09-02 15:05:22 · 1985 阅读 · 0 评论 -
DolphinDB 脚本工程化管理:模块代码版本与权限管理
本教程将介绍一种结合 GitLab 和 DolphinDB 函数视图进行脚本管理的方法,不仅可以实现函数的权限管理 ,还能利用 Git 进行代码的版本控制和协作开发,从而实现模块代码高效、规范、安全的管理。建议收藏~原创 2024-08-12 17:55:52 · 878 阅读 · 0 评论 -
DolphinDB 编程进阶:掌握这十个细节,让你的代码更出色
今天和大家分享的内容是:使用 DolphinDB 编程时,十个常被忽略但至关重要的细节。本文涵盖了元编程技巧、数据类型处理技巧以及分区策略优化等方面,旨在帮助大家有效避免分区冲突、计算错误、性能瓶颈、堆栈溢出等问题,从而在数据处理的征途上更加游刃有余。原创 2024-08-05 17:03:56 · 1125 阅读 · 0 评论 -
DolphinDB Web 端权限管理:可视化操作指南
过去 DolphinDB 在管理用户与权限时,需要依赖系统脚本。为了提升用户体验和操作效率,目前 DolphinDB 在 Web 端开发了可视化权限操作管理模块,用户可以轻松地设定对数据库、内存表、流表、函数视图的访问限制,从而确保数据库系统的安全。操作指南奉上,建议收藏~原创 2024-07-23 16:56:03 · 1349 阅读 · 0 评论 -
数据高效交互丨DolphinDB Redis 插件使用指南
DolphinDB 的 Redis 插件提供了一种数据集成的工具,可构建高效且扩展性强的实时数据处理和分析应用程序。原创 2024-07-09 14:43:02 · 1125 阅读 · 0 评论 -
从一次 SQL 查询的全过程了解 DolphinDB 线程模型
DolphinDB 的线程模型较为复杂,写入与查询分布式表都可能需要多个类型的线程。本教程将以一个分布式 SQL 查询为例,为大家介绍 DolphinDB 查询过程中的数据流,以及其经历的各类线程池,从而帮助大家理解 SQL 查询的全过程,进而了解 DolphinDB的线程模型、掌握 DolpinDB 的配置、以及优化系统性能的方法。原创 2024-07-03 09:38:20 · 1524 阅读 · 0 评论 -
流计算状态算子灵活开发指南
DolphinDB 在 DolphinScript 的基础上引入了类(Class),从而实现了面向对象的编程(Object-Oriented Programming, OOP)。面向对象编程是一种重要的编程范式,通过将数据和方法封装在类中,实现了数据多态、抽象、继承等特性。原创 2024-06-27 09:46:57 · 1340 阅读 · 0 评论 -
优化查询性能:DolphinDB 时间类型数据比较规则详解
DolphinDB 不仅支持多种时间数据类型,还提供了丰富的时间类型数据转换和比较规则。本文为你全面解析 DolphinDB 中时间类型数据的比较规则:从时间类型的介绍、转换、常规比较到分区剪枝的规则与注意事项……点击链接了解更多~原创 2024-06-14 09:47:31 · 1217 阅读 · 0 评论 -
概率分布、回归分析、假设检验……用 DolphinDB 函数库快速实现概率统计分析
DolphinDB 丰富的内置 #统计分析 函数,能够满足金融及物联网用户的各类业务需求。通过这些函数,用户可以轻松地进行 #概率统计 、概率分布分析、随机数生成、 #回归分析 和假设检验等操作,实现在金融风险管理、风险评估以及物联网异常检测、预测维护等领域的统计分析需求。建议收藏~原创 2024-06-05 10:03:02 · 1221 阅读 · 0 评论 -
Debezium+Kafka:Oracle 11g 数据实时同步至 DolphinDB 解决方案
本篇教程将介绍使用 Debezium 来实时捕获和发布 Oracle 11g 的数据库更改事件,并完成 Oracle 到 DolphinDB 的实时数据同步的完整解决方案。原创 2024-05-24 14:23:33 · 996 阅读 · 0 评论 -
更高效的数据交互实现丨 DolphinDB Arrow 插件使用教程
基于 PyArrow 官方提供的 C++ SDK,DolphinDB 开发了能够将 DolphinDB 数据格式和 Arrow 数据格式相互转换的数据格式插件,帮助用户将 DolphinDB 数据服务对接到 Arrow 环境中,以便缩短业务的全流程时间和降低序列化成本。原创 2024-05-14 14:18:16 · 727 阅读 · 0 评论 -
更便捷的数据工程化管理:数据目录(catalog)使用教程
为了向用户提供更便捷、更标准、兼容性更强的数据库访问体验,同时能够更方便地与第三方软件进行集成,DolphinDB 在 3.00.0 版本中引入了 catalog 功能。用户可通过 catalog 统一管理 database 和 table 等数据库对象,并使用标准 SQL 的语法对其进行访问。阅读原文详细了解 DolphinDB catalog 的基本概念与具体用法~原创 2024-05-09 10:57:21 · 1164 阅读 · 0 评论 -
利用函数视图实现精细化管控:DolphinDB 非标权限管理指南
今天为大家分享如何在 DolphinDB 中通过函数视图,对表的访问权限实现更加精细和个性化的管控,例如限制用户仅能访问表中某些行或某些列的数据。阅读全文了解更多!原创 2024-05-09 10:53:18 · 1028 阅读 · 0 评论 -
复杂事件处理(CEP)引擎白皮书正式发布!
现已上线官网!原创 2024-05-07 10:16:55 · 617 阅读 · 0 评论 -
低延时+高并发+强事务丨DolphinDB 交易型内存存储引擎 IMOLTP 使用指南
DolphinDB 设计并实现了一款自研的交易型内存存储引擎 IMOLTP,在省去磁盘 I/O 开销的同时,能够低延迟地响应高频度、高并发的更新和查询操作,点击文章了解如何使用!原创 2024-04-11 15:20:16 · 1099 阅读 · 0 评论 -
更高效、更简洁的 SQL 语句编写丨DolphinDB 基于宏变量的元编程模式详解
DolphinDB V3.00.0 / 2.00.12 版本将支持更高效简洁的元编程方法——基于宏变量的元编程,点击原文了解如何使用~原创 2024-04-02 14:25:12 · 1447 阅读 · 0 评论 -
DolphinDB 常见数据库错误代码大全
我们整理了 DolphinDB Server 中的异常以及关键错误信息,总结出了一份列表,包含上百个错误代码以及对应的错误原因,方便开发人员更迅速地定位并处理问题~ P.S. 错误代码会随着每一次版本发布而更新,收藏文中详情链接,下次查询不迷路~原创 2024-03-25 16:04:08 · 502 阅读 · 0 评论 -
记录资源利用,监控查询操作丨DolphinDB 用户级别资源跟踪功能详解
这一功能使用户能够获取有关 CPU 和内存使用情况的详细信息,记录用户对分布式表发起的 SQL 查询次数以及读取表的行数和数据量大小等数据。通过这些信息,用户能够深入了解 DolphinDB 在系统中的行为,从而更好地优化操作,提升整体系统性能。本文将从等四个方面介绍如何使用 DolphinDB 用户级别的资源跟踪功能。原创 2024-03-19 10:37:21 · 986 阅读 · 0 评论 -
建库建表时,最容易忽略的10个细节
使用 DolphinDB 创建数据库和表时,如果对于分区列、分区类型和排序列的选择未加注意,可能会导致查询速度变慢、数据丢失或插入错误等一系列问题。更好地了解 DolphinDB 建库建表时需注意的细节,有助于加快查询速度、减少内存使用、提高 CPU 利用率。一起来看看这十个细节,check 一下你的建库建表操作吧~原创 2024-03-05 10:36:09 · 1044 阅读 · 0 评论 -
大幅提升数据库删除性能丨DolphinDB 软删除功能详解
软删除(Soft Delete)是一种在数据库中处理数据删除的方法,这种删除方式并不是直接从数据库中移除数据,而是通过特定的标记方式在查询的时候将此记录过滤掉,在后台合并数据文件时才真正删除数据。相对于硬删除(Hard Delete),即直接从数据库中永久删除数据,软删除以追加方式进行数据删除,可大幅度提升列式数据库删除的效率。自 DolphinDB 2.00.11版本起,Server 中已开始支持软删除功能。实现原理详情&应用场景&性能测试案例,点击了解更多!原创 2024-02-26 13:50:20 · 1288 阅读 · 0 评论 -
实用性再提升!DURATION 数据类型现已支持交易日历!
DolphinDB 的交易日历再度更新啦!自 2.00.11.1 版本起,DURATION 数据类型已支持交易日历。用户可以用“正负数字 + 4个大写字母”的形式表示交易所交易日历时间,计算时还可以自动去除休市日,在只需要考虑交易日的研究中简化数据处理过程,使计算结果准确。点击原文了解详细用法!原创 2024-02-01 14:34:19 · 1577 阅读 · 0 评论 -
云上自动部署丨使用 Terraform 在 AWS 上搭建 DolphinDB
Terraform 是是一款基础架构即代码工具(IaC),几乎支持市面上所有的云服务,能够通过代码管理 IT 资源,并自动化部署资源,从而避免手动部署可能引发的错误。此外,Terraform 的命令行接口(CLI)简化了将配置文件部署到 AWS 或其他云平台的过程。本教程将介绍如何通过 Terraform 快速地在 AWS 部署 DolphinDB 单节点和高可用集群,快来看看吧~原创 2024-02-01 14:32:52 · 1389 阅读 · 0 评论 -
干货收藏丨DolphinDB 节点启动流程简析与常见问题一览
重启节点时,用户可能会遇到启动太慢、甚至启动失败等问题。本教程以 DolphinDB v2.00.11 版本为例,结合运行日志简析 DolphinDB 整体的启动流程和重要模块的启动流程,并分析启动时常见问题的现象、原因和解决方案。建议收藏参考~原创 2024-01-18 09:52:42 · 1211 阅读 · 0 评论 -
遇到 Out of Memory 怎么办?DolphinDB OOM 应对指南请查收!
Out of Memory,简称 OOM ,代表内存耗尽的一种异常状态。造成 OOM 的原因有很多,其中包括数据量庞大、频繁的数据写入和查询操作,以及可能存在的内存泄漏问题。了解这些原因,能够帮助我们更好地规划、优化和维护系统,从而提高其稳定性和性能。本文将针对在使用 DolphinDB 时遇到 OOM 这一问题,对造成 OOM 的原因进行定位分析和归纳总结,并给出相应解决方案以及规避建议,来看看吧~原创 2024-01-16 10:50:44 · 1224 阅读 · 0 评论 -
DolphinDB 高可用集群迁移指南
在业务可行并确保资源充足的情况下,我们推荐将伪高可用集群迁移升级为高可用集群,以提升系统的稳定性和可靠性。本篇教程将详细介绍如何搭建伪高可用集群,以及如何从伪高可用集群迁移到真正的高可用集群。原创 2024-01-10 14:26:07 · 969 阅读 · 0 评论 -
DolphinDB 计算节点使用指南
DolphinDB 在架构上引入了计算节点,将集群的计算与存储进行分离,能有效地保证集群数据写入的稳定性,降低故障平均修复时间。原创 2023-04-18 10:51:18 · 407 阅读 · 0 评论 -
基于 DolphinDB 搭建微服务的 SpringBoot 项目
如何通过 SpringBoot 快速搭建 DolphinDB 微服务,并且基于 Mybatis 操作 DolphinDB 数据库。原创 2022-09-28 10:54:59 · 804 阅读 · 0 评论 -
DolphinDB节点启动时的流计算自动订阅教程
DolphinDB 内置的流数据框架支持流数据的发布、订阅、预处理、实时内存计算、复杂指标的滚动窗口计算等,是一个运行高效、使用便捷的流数据处理框架。本教程主要解决基于 DolphinDB 流数据处理框架完成业务代码开发后,如何部署节点启动时的流计算自动订阅问题。原创 2021-12-17 10:34:36 · 819 阅读 · 0 评论 -
从一次 SQL 查询的全过程看 DolphinDB 的线程模型
分布式系统较为复杂,无论写入还是查询,都需要多个节点的配合才能完成操作。本教程以一个分布式 SQL 查询为例,介绍 DolphinDB 分布式数据库的数据流以及其中经历的各类线程池。通过了解 SQL 查询的全过程,也可以帮助我们更好地优化 DolpinDB 的配置和性能。1. DolphinDB 线程类型woker常规交互作业的工作线程,用于接收客户端请求,将任务分解为多个小任务,根据任务的粒度自己执行或者发送给 local executor 或 remote executor 执行。loca原创 2021-12-16 10:30:06 · 1403 阅读 · 0 评论 -
更强大、更灵活、更全面丨一文搞懂DolphinDB窗口计算
本篇将系统的介绍DolphinDB的窗口计算,从概念划分、应用场景、指标计算等角度,帮助用户快速掌握和运用DolphinDB强大的窗口计算功能。原创 2021-12-14 11:04:51 · 793 阅读 · 0 评论 -
「DolphinDB教程」如何正确定位节点宕机的原因
在使用DolphinDB时,有时客户端会抛出异常信息:Connection refused。此时,linux操作系统上使用ps命令查看,会发现DolphinDB进程不见了。本教程针对出现这种情况的各种原因进行定位分析,并给出相应解决方案。1.查看节点日志排查原因DolphinDB每个节点的运行情况会记录在相应的日志文件中。通过分析日志,能有效地掌握DolphinDB运行状况,从中发现和定位一些错误原因。当节点宕机时,非DolphinDB系统运行原因导致节点关闭的情形通常有以下三种:Web集群管理原创 2021-11-10 15:12:16 · 1622 阅读 · 0 评论 -
干货丨如何用Orca写数据?
Orca项目在DolphinDB之上实现了pandas API,使用户能更高效地分析处理海量数据。在数据存储方面,与pandas相比,Orca具备以下显著优势:更灵活的选择Orca不仅能像pandas一样在内存中进行计算,将DatFrame中的数据导出到磁盘,也能随时将DataFrame的数据以及计算结果追加到DolphinDB的数据表中,为后续的数据查询、分析提供参考。更优异的性能当数据量非常大而又需要保存数据时,在pandas中可以将整个DataFrame的数据保存到磁盘,在下一次运行Pyt原创 2020-12-25 09:28:00 · 312 阅读 · 0 评论 -
干货丨详细解读Orca与pandas的差异
由于DolphinDB是一款相对成熟的高性能分布式时序数据库,其底层对一些方法的处理机制已经成型,这就决定了Orca在某些细节方面会与pandas存在差异。为了方便用户更快地了解和掌握Orca,本文按照以下几个模块来系统地介绍Orca与pandas存在的差异。数据类型的差异 通用函数的差异 Input/output的差异 Series、DataFrame的差异 Index Objects的差异 GroupBy的差异 Resampling的差异 Orca分区表的特殊差异1 数据类型的差异原创 2020-12-24 09:40:00 · 390 阅读 · 0 评论 -
干货丨Orca入门指南
本文将详细介绍Orca的安装方法、基本操作,以及Orca相对pandas的差异,用户在使用Orca编程时需要注意的细节,以便用户能写出高效的Orca代码。1. 安装Orca支持Linux和Windows系统,要求Python版本为3.6及以上,pandas版本为0.25.1及以上。Orca项目已经集成到DolphinDB Python API中。通过pip工具安装DolphinDB Python API,就可以使用Orca。pip install dolphindbOrca是基于Dolph原创 2020-12-23 09:50:43 · 1655 阅读 · 7 评论 -
干货丨如何用Orca对DolphinDB分布式表进行操作
DolphinDB是一个分布式时序数据库,并且内置了丰富的计算和分析功能。它可以将TB级的海量数据存储在多台物理机器上,充分利用CPU,对海量数据进行高性能分析计算。通过Orca,我们可以在python环境中使用与pandas语法相同的脚本对DolphinDB分布式数据库中的数据进行复杂高效的计算。本教程主要介绍Orca对DolphinDB分布式表的操作。本示例使用的是DolphinDB单机模式。首先,创建本教程的示例数据库dfs://orca_stock 。创建数据库的DolphinDB脚本如下所示:原创 2020-12-22 09:31:25 · 297 阅读 · 0 评论 -
干货丨Orca: 基于DolphinDB的分布式pandas接口系列教程
Orca项目在DolphinDB之上实现了pandas API,使用户能更高效地分析处理海量数据。如果你已经熟悉pandas,你就能通过Orca包,充分利用DolphinDB的高性能和并发,处理海量数据,而不需要额外的学习曲线。如果你已经有现成的pandas代码,你不需要对已有的pandas代码进行大量修改,就能迁移到Orca。目前,Orca项目仍然处于开发阶段,并且在快速迭代。我们欢迎你在使用Orca的同时,通过GitHub issues给我们反馈。Orca的设计理念Python的第三方库原创 2020-12-18 10:34:23 · 335 阅读 · 0 评论