第二类斯特林数
ACM败犬
这个作者很懒,什么都没留下…
展开
-
洛谷 P4091:[HEOI2016/TJOI2016]求和(第二类斯特林数 + NTT)
由于 当j>i时,S(i,j)=0当 j > i时,S(i,j) = 0当j>i时,S(i,j)=0;∴∑i=0n∑j=0iS(i,j)∗2j∗(j!)\sum_{i = 0}^n\sum_{j = 0}^iS(i,j) * 2^j *(j!)∑i=0n∑j=0iS(i,j)∗2j∗(j!) = ∑i=0n∑j=0nS(i,j)∗2j∗(j!)\sum_{i = 0}^...原创 2019-09-25 18:30:41 · 186 阅读 · 0 评论 -
Codeforce 932 E. Team Work(第二类斯特林数)
题目大意:让你求∑i=1nC(n,i)∗ik\sum_{i = 1}^nC(n,i)*i^k∑i=1nC(n,i)∗ik第二类斯特林数可以用[n]0,[n]1,[n]2,..,[n]p[n]_0,[n]_1,[n]_2,..,[n]_p[n]0,[n]1,[n]2,..,[n]p写出 npn^pnp[n]k=n∗(n−1)∗(n−2)∗..∗(n−k+1)[n]_k = n *...原创 2019-09-26 10:52:30 · 166 阅读 · 0 评论 -
Codeforce 961 G. Partitions(第二类斯特林数 + 思维)
题目大意:定义一个集合 SSS 的权值 W(S)W(S)W(S):∣S∣∑i∈Sw[i]|S|\sum_{i \in S}w[i]∣S∣∑i∈Sw[i]将 n 个元素的集合划分成 k 个子集,对所有的划分情况,对这些子集和求W(S)W(S)W(S)之和最容易想到的解法:枚举每一个元素w[i]w[i]w[i]的贡献,那么只需要枚举这个元素所在集合的大小即可。可以得到一个答案式子:re...原创 2019-09-26 21:49:26 · 327 阅读 · 0 评论 -
洛谷 P4827 [国家集训队] Crash 的文明世界(第二类斯特林数 + 树形DP + 思维)
代码:#include<bits/stdc++.h>using namespace std;const int maxn = 5e4 + 100;const int mod = 10007;int n,k;vector<int> g[maxn];int S[300][300],dp[maxn][300],pw[maxn];int cur[300];v...原创 2019-09-27 00:31:04 · 171 阅读 · 0 评论