引言
时间序列分割方法:
- 基于序列统计学特征分割:通常用于处理单个动作,以变化点检测方法为主 ,如决策时,最近邻,隐马尔科夫和高斯混合模型。 利用决策树快速找出分割点;利用文本挖掘中主题模型提取行为模式;利用隐马尔科夫中时间序列内部状态变化识别活动变化等。
- 基于时间序列形状模式的变化点边界分割:目标是发现时间序列数据背后的显著变化。如基于
相对皮尔逊散度估计的变化点检测算法;基于内核的 Hilbert-Schmidt 独立性准则的检测度量以检测变化点;利用关键点压缩方法表示时间序列, 基于动态时间规整距离完成分割;此外, 基于递归神经网络和时序数据符号化也可判别活动 起止时刻;基于序列形状的特征分割, 形状是用于时间序列分段的另一个独特属性, 利用时间序列形状的模式变化点作为分段的边界;
主要贡献:
- LAC-FLOSS: 改进的基于矩阵轮廓的时间序列分割算法,对现有的基于矩阵轮廓的时间序列分割算法 FLOSS 进行研究, 提出了改进的分割算法 LAC-FLOSS, 该算法利用给弧添加权重形成一种带权弧, 然后通过设置匹配距离阈值来解决弧的跨状态子序列误匹配问题。
- IER: 针对基于 CAC 序列提取分割点算法的改进研究。利用 CAC 序列的形状特征, 从波谷中提取极小值, 进而提出改进的提取分割点算法 IER. 该算法能够避免原分割点提取算法使用窗口在非拐点处取到分割点, 提升提取分割结果的准确性。
预备知识
矩阵轮廓
Matrix Profile的组成:
- distance profile:最小的标准化欧式距离。
- profile index:第一个最近邻索引,即最相似子序列位置。
用滑动窗口计算Matrix Profile:
- 计算窗口大小的子序列相对于整个时间序列的距离
- 设置排除区域来忽略不重要的匹配
- 以最小距离值更新distance profile
- 设置第一个最近邻居索引profile index