HDU 1176 免费馅饼(dp)

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1176

免费馅饼

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 60927    Accepted Submission(s): 21380


 

Problem Description

都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:


为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)

 

 

Input

输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。

 

 

Output

每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
 

 

 

Sample Input

6

5 1

4 1

6 1

7 2

7 2

8 3

0

 

 

Sample Output

4

分析:

一开始真的不知道是个数字三角形的变形题,思考了很久,最后看了别人的题解。。。。。。。

 

分析:

一个人站在5的位置

第一秒能到的位置:4,5,6

第二秒能到的位置:3,4,5,6,7

第三秒能到达的位置:2,3,4,5,6,7,8

 

依次类推:

第一秒:                       4,5,6

第二秒:                 3,4,5,6,7

第三秒:           2,3,4,5,6,7,8

第四秒:     1,2,3,4,5,6,7,8,9

第五秒:0,1,2,3,4,5,6,7,8,9,10

第六秒:0,1,2,3,4,5,6,7,8,9,10

 

非常的类似数字三角形,回顾一下数字三角形:从顶向下走(只能向下或者左下),怎么走使得走过的路权值之和最大

回到这个问题,这个问题的权值就是某个时刻某个位置馅饼的个数

 

dp[i][j]:从第i秒j位置走可以得到馅饼的个数

 

是不是非常非常类似数字三角形?

每次移动的话只要三个选择:向左一个单位,向右一个单位,不动

所以状态转移方程:

dp[i][j]=max(dp[i+1][j],max(dp[i+1][j-1],dp[i+1][j+1]))+dp[i][j];

跟数字三角形一样,倒推

 

注意初始化:

 

dp数组初始化为0,表示一开始所有时刻,所有位置馅饼个数为0

每个时刻每个位置馅饼的个数要随着输入写好

 

找到时刻的最大值,这样从时刻最大值倒数循环

代码:

#include<bits/stdc++.h>
using namespace std;
#define max_v 100005
int dp[max_v][20];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        if(n==0)
            break;
        memset(dp,0,sizeof(dp));
        int t=-1;
        for(int i=0;i<n;i++)
        {
            int x,y;
            scanf("%d %d",&x,&y);
            dp[y][x]++;
            if(y>t)
                t=y;
        }
        for(int i=t-1;i>=0;i--)
        {
            for(int j=10;j>=0;j--)//顺序也是可以的
            {
                dp[i][j]=max(dp[i+1][j],max(dp[i+1][j-1],dp[i+1][j+1]))+dp[i][j];
            }
        }
        printf("%d\n",dp[0][5]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值