Gilbert Strang的线性代数课程笔记-第三课

这篇博客探讨了矩阵乘法的四种理解方式,从行与列相乘到列与行相乘,以及根据行列组合的不同视角。此外,详细解释了矩阵的可逆性,通过实例展示了奇异矩阵为何不可逆,并介绍了Gauss-Jordan方法求逆矩阵的过程。
摘要由CSDN通过智能技术生成

第三课的主题为:矩阵乘法的四种理解矩阵的可逆性


矩阵乘法的四种理解

假设有矩阵AB = C

且A、B、C三者的维度分别为:m x p,p x n,m x n

1. 按定义理解,将目标矩阵C的每个元素理解为行与列相乘的结果

根据之前文档中矩阵乘法,元素Cij来源于:A中第i行与B中第j列 相乘而得

 A中第i行的元素有:ai1, ai2,... aip,B中第j列的元素有:b1j,b2j,...Bpj

Cij = (A中第i行) * (B中第j列) = ai1*b1j + ai2*b2j...aip*bpj = Σaik*bkj (k∈1~p)来表示

这个计算过程的形状变化是:

A的第i行形状为1 x p,B的第j列形状为p x 1

1 x p,p x 1 => 1 x 1

所以每一组行列相乘,会构成矩阵C中的一个元素,共有m x n组行列,构成矩阵C中m x n个元素

2. 与定义相反,用列与行相乘的角度来理解

当我们把矩阵乘法用列与行相乘的角度来表示时,先看一看形状:

A中第i列的形状为:m x 1,B中第j行的形状为:1 x n

m x 1,1 x n => m x n,正好是目标矩阵的尺寸

所以一组列行相乘可以得到一个m x n的矩阵,目标矩阵由p组列行相乘得到的m x n个矩阵相加而得

不好理解的话举个例子:

按正常的行列相乘有:

用列乘以行来理解:

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值