多目标数据关联算法

本文介绍了多目标跟踪算法DeepSort的核心思想和流程,包括状态估计、目标管理和匹配级联等步骤,强调了级联匹配的重要性,用于解决目标长时间遮挡后导致的匹配问题。DeepSort依赖于检测框的质量,主要考虑位置信息进行运动匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

    我的研究方向主要是多传感器融合感知,应用在自动驾驶领域和无人机领域,实现多目标的识别和跟踪。多传感器间的数据采用特征提取的方法,需要针对性的采用合适的数据关联算法,并根据特征级融合进行优化。

数据关联算法:

级联匹配(DeepSort)

谈到多目标跟踪算法,自然绕不开DeepSort这一个经典的方法。该方法作为经典的Tracking-by-Detection模式,可供优化和改进的方法较多。
核心思路:寻找增广路径和最大匹配。换言之就是尽可能多的实现匹配。
算法流程:
1.状态估计 ( μ , ν , γ , h , x ^ , u ^ , γ ^ , h ^ ) , 其 中 μ , ν , γ , h , 代 表 检 测 框 中 心 的 横 纵 坐 标 , 横 纵 比 , 高 度 , u ^ , γ ^ , h ^ 为 图 像 中 的 对 应 速 度 。 (\mu,\nu,\gamma,h,\widehat{x},\widehat{u},\widehat{\gamma},\widehat{h}),其中\mu,\nu,\gamma,h,代表检测框中心的横纵坐标,横纵比,高度,\widehat{u},\widehat{\gamma},\widehat{h}为图像中的对应速度。 (μ,ν,γ,h,x ,u ,γ ,h ),μ,ν,γ,h,u ,γ ,h
在这里插入图片描述
2.目标管理:
(1)帧间间隔时间 t t t,帧间实现成功匹配需要在阈值内;
(2)目标三种状态:

  • tentative:当前帧中检测到目标新生成,待查看是否连续帧中均存在;
  • confirmed:连续帧中匹配成功;
  • deleted:连续帧中匹配失败。

3.目标指派
(1)运动信息关联:基于匀速直线运动模型,卡尔曼滤波器做状态预测,预测结果和检测结果间利用马氏距离完成数据关联:


d 1 ( i , j ) = ( d j − y j ) T S j − 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值