矩阵填充学习(二)

前言

上一篇文章学习了一些关于矩阵以及张量的基础知识,但是并不完全,后续学习中会继续补充。这篇文章将对张量分解的内容进行介绍学习。

张量的Tucker分解

张量分解的概念源自Hitchcock于1927发表的论文,他提出一个张量可以表现为有限个秩1张量的和,并称为典范多元分解。到20世纪60年代,Tucker相继发表了三篇关于张量因子分解的论文,后续Carroll与Harshman在1970年提出典范因子分解和平行因子分解,从而奠定了张量分解的两类方法:
(1)Tucker分解,又称高阶奇异值分解
(2)典范/平行因子分解,常简称CP分解
下面介绍Tucker分解的相关内容。

Tucker分解(高阶奇异值分解)

Tucker分解与Tucker算子密切相关。

Tucker算子

Tucker算子是张量与矩阵的多模式乘法的一种有效表示。

定义

G ∈ K J 1 × J 2 × ⋯ × J N \mathcal{G} \in \mathbb{K}^{J_1\times J_2\times \cdots \times J_N} GKJ1×J2××JN,矩阵 U ( n ) ∈ K I n × J n U^{(n)}\in \mathbb{K}^{I_n\times J_n} U(n)KIn×Jn,其中 n ∈ { 1 , ⋯   , N } n\in \{ 1,\cdots,N \} n{ 1,,N},则Tucker算子定义为: [ [ G ; U ( 1 ) , U ( 2 ) , ⋯   , U ( N ) ] ] = d e f G × 1 U ( 1 ) × 2 U ( 2 ) ⋯ × N U ( N ) [[\mathcal{G};U^{(1)},U^{(2)},\cdots ,U^{(N)}]]\overset{\underset{\mathrm{def}}{}}{=} \mathcal{G} \times_1U^{(1)}\times_2U^{(2)}\cdots \times_N U^{(N)} [[G;U(1),U(2),,U(N)]]=defG×1U(1)×2U(2)×NU(N)其结果是一个N阶 I 1 × I 2 × ⋯ I N I_1\times I_2\times \cdots I_N I1×I2×IN张量。

Tucker算子性质

给定N阶张量 G ∈ K J 1 × J 2 × ⋯ × J N \mathcal{G} \in \mathbb{K}^{J_1\times J_2\times \cdots \times J_N} GKJ1×J2××JN和标号集合 N = { 1 , ⋯   , N } \mathcal{N}=\{ 1,\cdots,N\} N={ 1,,N},则Tucker算子具有以下性质:

(1)若 U ( n ) ∈ K I n × J n , n ∈ N U^{(n)}\in \mathbb{K}^{I_n\times J_n},n\in \mathcal{N} U(n)KIn×Jn,nN,则 [ [    [ [ G ; U ( 1 ) , U ( 2 ) , ⋯   , U ( N ) ] ]    ; V ( 1 ) , ⋯   , V ( N ) ] ] = [ [ G ; V ( 1 ) U ( 1 ) , ⋯   , V ( N ) U ( N ) ] ] [[\; [[\mathcal{G};U^{(1)},U^{(2)},\cdots ,U^{(N)}]]\; ;V^{(1)},\cdots,V^{(N)}]]=[[\mathcal{G};V^{(1)}U^{(1)},\cdots ,V^{(N)}U^{(N)}]] [[[[G;U(1),U(2),,U(N)]];V(1),,V(N)]]=[[G;V(1)U(1),,V(N)U(N)]]
(2)若 U ( n ) ∈ K I n × J n , n ∈ N U^{(n)}\in \mathbb{K}^{I_n\times J_n},n\in \mathcal{N} U(n)KIn×Jn,nN具有满列秩,则 X = [ [ G ; U ( 1 ) , U ( 2 ) , ⋯   , U ( N ) ] ]    ⟺    G = [ [ X ; U ( 1 ) † , U ( 2 ) † , ⋯   , U ( N ) † ] ] \mathcal{X}=[[\mathcal{G};U^{(1)},U^{(2)},\cdots ,U^{(N)}]]\iff \mathcal{G}=[[\mathcal{X};U^{(1)\dagger},U^{(2)\dagger},\cdots ,U^{(N)\dagger}]] X=[[G;U(1),U(2),,U(N)]]G=[[X;U(1),U(2),,U(N)]]
(3)若 U ( n ) ∈ K I n × J n U^{(n)}\in \mathbb{K}^{I_n\times J_n} U(n)KIn×Jn(其中 J n ⩽ I n J_n\leqslant I_n

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值