矩阵填充学习(一)

本文介绍了张量的基础知识,包括张量的概念、张量纤维、模式-n向量、切片和张量的展开方式(水平和纵向)。此外,还讨论了张量的内积、Frobenius范数、向量外积和张量的秩,为后续的矩阵填充和分解学习奠定基础。
摘要由CSDN通过智能技术生成

前言

最近研究课题确定以后,其中有一部分内容需要用到矩阵填充的知识,因此计划学习一些矩阵分解和矩阵填充,也记录一下学习的过程,当作笔记了。本篇主要介绍学习一些前置知识。下面内容都是通过学习张贤达编写的《矩阵分析与应用》总结得到,这本书内容非常丰富,当作工具书或者学习都很不错。

一些需要清楚的基本概念

张量

数据沿着一相同方向排列称为一路阵列。标量是零路阵列的表示,行向量列向量分别是数据沿水平和垂直方向排列的一路阵列。矩阵是数据沿水平水平和垂直两个方向排列的二路阵列。张量是数据的多路阵列表示,一个张量就是一个多路阵列或多为阵列,是矩阵的一种扩展。n路阵列表示的张量称为n阶张量,记为 τ ∈ K I 1 × I 2 × ⋯ × I n \tau \in K^{I_1 \times I_2 \times \cdots \times I_n} τKI1×I2××In,其中K代表数域的R或者复数域C。

矩阵 A ∈ K m × n A \in K^{m \times n} AKm×n用元素和矩阵符号[.]表示为 A = [ a i j ] i , j = 1 m , n A=[a_{ij} ]^{m,n}_{i,j=1} A=[aij]i,j=1m,n,n阶张量 A ∈ K I 1 × I 2 × ⋯ × I n A \in K^{I_1 \times I_2 \times \cdots \times I_n} AKI1×I2××In用双重矩阵符号[[.]]表示为 A = [ [ a i 1 ⋯ i n ] ] i 1 , ⋯   , i n = 1 I 1 , ⋯   , I n A=[[a_{i_1 \cdots i_n }]]^{I_1,\cdots,I_n}_{i_1,\cdots,i_n=1} A=[[ai1in]]i1,,in=1I1,,In,其中 a i 1 ⋯ i n a_{i_1 \cdots i_n } ai1in是张量的第 ( i 1 , ⋯   , i n ) (i_1,\cdots,i_n) (i1,,in

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值