蓝桥杯-基础练习-Python[Fibonacci数列]

  1. 问题描述:Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
  2. 输入格式:输入包含一个整数n。
  3. 输出格式:输出一行,包含一个整数,表示Fn除以10007的余数。
  4. 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
  5. 样例输入1:10
  6. 样例输出1:55
  7. 样例输入2:22
  8. 样例输出2:7704
  9. 数据规模与约定:1 <= n <= 1,000,000。
F1=1
F2=1
n=int(input())
if n==1 or n==2:
    print(1)
else:
    for i in range(3,n+1):
        Fi=(F1+F2)%10007
        F1=F2
        F2=Fi
    print(F2)

分析:经过计算,F18=2584, F19=4181, F20=6765, F21=10946, F22=17711, F23=28657. 关键在于观察F21,F22的计算。

  • 计算方法1: F21: (6765+4181)%10007=(6765+4181)-10007=939
    F22: ( (6765+4181)%10007)+6765= ( (6765+4181)-10007)+6765=(10946-10007)+6765=7704

  • 计算方法2: F21: 6765+4181=10946, 10946%10007=10946-10007=939
    F22: (10946+6765)%10007=(10946+6765)-10007=7704
    因此,加法交换律
    ( (6765+4181)%10007)+6765= ( (6765+4181)-10007)+6765=(10946-10007)+6765=7704
    (10946+6765)%10007=(10946+6765)-10007=7704
    对于F23及以后的数,经过取余数,每一项均小于10007.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值