- 问题描述:Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
- 输入格式:输入包含一个整数n。
- 输出格式:输出一行,包含一个整数,表示Fn除以10007的余数。
- 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
- 样例输入1:10
- 样例输出1:55
- 样例输入2:22
- 样例输出2:7704
- 数据规模与约定:1 <= n <= 1,000,000。
F1=1
F2=1
n=int(input())
if n==1 or n==2:
print(1)
else:
for i in range(3,n+1):
Fi=(F1+F2)%10007
F1=F2
F2=Fi
print(F2)
分析:经过计算,F18=2584, F19=4181, F20=6765, F21=10946, F22=17711, F23=28657. 关键在于观察F21,F22的计算。
-
计算方法1: F21: (6765+4181)%10007=(6765+4181)-10007=939
F22: ( (6765+4181)%10007)+6765= ( (6765+4181)-10007)+6765=(10946-10007)+6765=7704 -
计算方法2: F21: 6765+4181=10946, 10946%10007=10946-10007=939
F22: (10946+6765)%10007=(10946+6765)-10007=7704
因此,加法交换律。
( (6765+4181)%10007)+6765= ( (6765+4181)-10007)+6765=(10946-10007)+6765=7704
(10946+6765)%10007=(10946+6765)-10007=7704
对于F23及以后的数,经过取余数,每一项均小于10007.