蓝桥杯:入门训练 Fibonacci数列(java实现)

问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。

输入格式
输入包含一个整数n。
输出格式
输出一行,包含一个整数,表示Fn除以10007的余数。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。

样例输入
10
样例输出
55
样例输入
22
样例输出
7704
数据规模与约定
1 <= n <= 1,000,000。


方法一:使用递归


import java.util.Scanner;

public class Main {
	/*Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
	当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。*/
	public static void main(String[] args) {
		//接收控制台的输入
		Scanner sc=new Scanner(System.in);
        //获取输入的数字
		int n=sc.nextInt();
		//调用sum处理结果
		int mod=sum(n)%10007;
		System.out.println(mod);
	}
	public static int sum(int n) {
		if(n==1 ||n ==2) {
			return 1;
		}else {
			return sum(n-1)+sum(n-2);
		}
	}
}

ps:方法一容易超时


方法二:使用迭代


import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
        int n=sc.nextInt();
        //创建一个数组来存放余数,并指定其长度
        //长度为n+2是为了存放所有的n且包括n之前对10007的所有余数(数组从f[0]开始,并要存放f[1]和f[2],如果n=1的话,数组的长度为3)
        int []f=new int[n+2];
        //定义n=1和n=2的时候余数为1
        f[1]=1;
        f[2]=1;
        if(n>2) {
        	for(int i=3;i<=n;i++) {
        		//使用数组f来存放余数,比总和求出来在求余节省了时间
        		f[i]=(f[i-1]+f[i-2])%10007;
        	}
        }
        System.out.println(f[n]);
	}

}

ps:递归虽然可以解决一些复杂的代码,但时间的使用较高,在调用函数的同时也较浪费空间,此题在考虑到时间的问题上,使用迭代更合适。

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页