博主在学习《深入浅出强化学习原理入门》第二章的模型构建时,按照书上的步骤做完之后,发现出现了以下提示:
意思是在名为'GridEnv'的类下没有属性'_seed'。
在这里首先回顾书上的步骤
Part 1 注册自己的环境
个人感觉书上的步骤中对gym的安装目录没有做出详细说明。
步骤如下:
1、将我们自己的环境文件(文件名为grid_mdp.py)拷贝到你的gym安装目录/gym/gym/envs/classic_control文件夹中。
说明:gym的安装目录参见这篇文章,我们首先找到Anaconda的安装目录(通常在ProgramData),在其目录下找到\Lib\site-packages,里面全部为第三方库,如图所示:
这里为什么做特殊说明呢,因为博主在实验的时候犯了一个错误,我在OpenAI上下载了一个gym的离线安装包,然后后续操作都是在这个离线安装包上完成的,由于gym没有被导入python,所以怎么弄也不对,后来终于发现需要的是嵌入python中的gym环境中的gym/envs/classic_control文件夹。
后续2,3步和郭宪老师的一样
2、打开该文件夹(第一步中的文件夹)下的__init__.py文件,在文件末尾加入语句:
from gym.envs.classic_control.grid_mdp import GridEnv
3、进入文件夹你的gym安装目录/gym/gym/envs,打开该文件夹下的__init__.py文件,添加代码:
register(
id='GridWorld-v0',
entry_point='gym.envs.classic_control:GridEnv',
max_episode_steps=200,
reward_threshold=100.0,
)
回归正题
Part 2 解决'GridEnv' object has no attribute '_seed'
这是什么原因呢?
1、首先,其他环境(例如:CartPole等)可以正常运行,于是,我对比了grid_mdp.py和cartpole.py,如下图所示。发现grid_mdp.py中没有_seed函数,所以在后续调用的时候会出现no attribute '_seed'的提示。
于是,我将左边的seed函数复制到grid_mdp.py中,并更名为_seed()函数。
2、再次运行,仍然出错,错误是:“'GridEnv' object has no attribute '_render'”
这是因为grid_mdp.py没有_render()函数,只有render()函数,于是将其改名即可成功运行。
3、其实更深层次的原因在于C:\ProgramData\Anaconda3\Lib\site-packages\gym\envs目录下的registration.py文件。
该文件中对于_seed&_render和seed&render有一些说法。