如何通过多帧影像进行超分辨率重构?

  1. 鲁棒性是英文robustness一词的音译,也可意译为稳健性。鲁棒性原是统计学中的一个专门术语,70年代初开始在控制理论的研究中流行起来,用以表征控制系统对特性或参数摄动的不敏感性。
  2. gan的生成器的理解:生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用于产生样本的简单分布。例如一个均匀分布,根据要生成分布的概率密度函数,进行建模,让均匀分布中的样本经过变换得到指定分布的样本,这就可以算是最简单的生成式模型。通过减小两个分布的差异可以让一个分布逼近另一个分布,这正是对抗网路在做的事情。

正式介绍

  1. 手抖导致的图像平移和线性插值的降采样。
  2. 所以本质上来讲从多帧低分辨率图像中进行超分辨率重建是个Inference的问题,高分辨率图像中的细节信息在录制成低分辨率帧的时候导致了丢失,然而抖动带来的位移相当于给了多一个维度的信息让我们可以通过算法对信息进行恢复,从某种意义上讲抖动保存了原来图像的细节信息。
  3. 如果把抖动的信息恢复出来,也就是把抖动后的这些低分辨率图片对齐,然后求一个平均,就可以对于细节补充了
  4. 进一步的,我们想推断出更高分辨率的图像,一个很自然的想法就是对超分辨率图像进行猜测,把猜测的图像变换后的结果和录制采样到的结果进行对比,然后把差异作为目标函数进行优化:

gan理解

  1. 生成器的网络架构和每一个位置的作用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值