主人的任务罢了,海面溢油检测

这篇博客介绍了如何利用SIFT算子进行图像配准,详细阐述了从特征点提取到图像变换矩阵获取的过程。代码示例展示了如何在OpenCV中实现这一过程,并且应用到多波段图像的配准。之后,通过GDAL库输出配准后的多波段图像,并进行了数据分析,确定了不同波段的溢油面积。博客还提及了考虑使用神经网络的可能性,但因数据量有限而未实施。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import cv2
import os
from scipy import ndimage
from skimage.io import imread, imsave
from osgeo import gdal


def sift_kp(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    sift = cv2.xfeatures2d_SIFT.create()
    kp, des = sift.detectAndCompute(gray_image, None)
    kp_image = cv2.drawKeypoints(gray_image, kp, None)
    return kp_image, kp, des


def get_good_match(des1, des2):
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(des1, des2, k=2)
    good = []
    for m, n in matches:
        if m.distance < 0.75 * n.distance:
            good.append(m)
    return good


def surf_kp(image):
    '''SIFT(surf)特征点检测(速度比sift快),精度差了很多'''
    height, width = image.shape[:2]
    size = (int(width * 0.2), int(height * 0.2))
    shrink = cv2.resize(image, size, interpolation=cv2.INTER_AREA)
    gray_image = cv2.cvtColor(shrink, cv2.COLOR_BGR2GRAY)
    surf = cv2.xfeatures2d_SURF.create()
    kp, des = surf.detectAndCompute(gray_image, None)
    kp_image = cv2.drawKeypoints(gray_image, kp, None)
    return kp_image, kp, des


def siftImageAlignment(img1, img2):
    _, kp1, des1 = sift_kp(img1)
    _, kp2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值