SAR数据监测海洋溢油

文章探讨了基于合成孔径雷达(SAR)影像的海洋溢油监测,指出传统方法易造成地物错分。通过选用2006年渤海地区SAR影像,应用灰度共生矩阵的纹理分析方法,提高溢油提取精度。SAR影像中油膜覆盖区因粗糙度降低呈现低灰度,但需区分其他类似地物。纹理分析包括基于统计、结构和谱方法,参数选择对结果提取精度至关重要。
摘要由CSDN通过智能技术生成

传统溢油的监测仅仅依靠提取光学影像的光谱信息或者合成孔径雷达的后向散射系数进行提取,这会造成很多同谱异物或者粗糙度相近似等的地物错分,因此,除了利用传统的影像信息以外,还需结合影像的纹理信息,从而提高溢油提取的精度,减少错分地物的数量。
文章选用2006年渤海地区的三景同轨SAR影像作为数据基础,应用基于灰度共生矩阵的方法对其进行纹理分析。该方法可以很好地对图像区域和表面进行感知并能够从像元的灰度相关性上对纹理特征进行详细描述,因此适合于SAR影像的海洋溢油监测。在纹理分析的过程中有很多参数需要选择,参数的选择的好坏将直接影响最终结果提取的精度。
合成孔径雷达是有效监测海洋溢油的卫星遥感工具之一。当海洋表面覆盖一层油膜时,油膜会阻碍海洋的正常运动,从而降低海洋表面的张力,使海面不能产生足够的短重力波和毛细波,因此油膜的覆盖区会比非油膜覆盖区的粗糙度低,于是在SAR影像上呈现出图像灰度较低的现象。图像灰度较低的区域不一定全是溢油,部分与溢油光谱信息或粗糙度相近似的类油物质也会使影像的灰度值较低,因此将类油与油膜区分开成了溢油监测的关键一步。
SAR图像的分类往往采用地物信息的纹理特征进行分类。
图像纹理分析法主要可以分为三种:基于统计方法的纹理分析、基于结构的纹理分析和基于谱方法的纹理分析。基于统计方法的纹理分析是寻找刻画纹理特征对图像中的区域进行分类;基于结构方法的纹理分析是研究组成纹理的基元和它们的排列规则;基于谱方法的纹理分析是建立在多尺度分析与时频分析基础上的纹理分析方法。
:文章选自《基于合成孔径雷达影像的海洋溢油纹理特征参数分析》魏铢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛毛真nice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值