在机器学习方面,模型性能在很大程度上取决于特征选择和对每个特征重要性的理解。LightGBM是微软开发的一种高效的梯度提升框架,由于其处理各种机器学习任务的速度和准确性而广受欢迎。LightGBM以其卓越的速度和内存效率,在众多领域中找到了实际应用。它能够有效地处理大规模数据处理,这使得它在金融,电子商务和医疗保健等行业中不可或缺,这些行业需要快速分析大量数据集。
什么是LightGBM?
LightGBM是Light Gradient Boosting Machine的缩写,是一个高性能、分布式、高效的梯度提升框架,专注于基于树的学习算法。它由Microsoft开发,广泛用于分类和回归任务。LightGBM被设计为内存高效和高度优化,使其成为机器学习从业者的热门选择。
特征重要性
特征重要性就像指南针,引导您穿过数据的迷宫。通过了解哪些因素在引导模型的预测,您可以就优先考虑哪些功能做出明智的决策,增强模型的可解释性,并微调模型以实现最佳性能。LightGBM提供了功能的重要性,使其成为一个更强大的工具。
LightGBM提供了两种主要类型的特征重要性分数:“分裂”和“增益”。
- 分裂功能重要性:此类型测量使用某个特征在模型中的所有树中拆分数据的次数。它有助于确定决策过程中最常涉及的特征。
- 增益功能重要性:另一方面,增益重要性量化了通过使用特定特征进行分割而实现的模型准确性的提高。它提供了一个更丰富的特征重要性视图,因为它也考虑了分割的质量。
选择正确的特征重要性类型取决于您的具体问题和目标。如果您想快速了解哪些功能最常用,“Split” 重要性是合适的。但是,如果您想要更有信息量和更准确的特征重要性度量,建议使用“Gain”重要性,因为它会考虑拆分的质量。
可视化LightGBM特征重要性
首先,确保您安装了LightGBM:
pip install lightgbm
让我们一步一步地分解所提供的代码:
步骤1:导入库
在此步骤中,我们导入代码将使用的必要库:
- 用于构建梯度增强框架的lightgbm
- matplotlib.pyplot用于创建绘图
- sklearn.datasets导入乳腺癌数据集进行分类
- train_test_split、numpy和pandas执行数据预处理
#Importing Necessary Libraries
import pandas as pd
import numpy as np
import lightgbm as lgb
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
步骤2:创建LightGBM数据集
在这里,创建了一个名为train_data的LightGBM数据集。该数据集专门用于训练LightGBM模型。它使用以下输入构建:
- X_train:假设此变量包含训练特征数据(即,独立变量)。
- y_train:假设该变量包含相应的目标标签(即,因变量或要预测的值)。
# Loading the Breast Cancer Dataset
cancer = load_breast_cancer()
# Creating dataframe
df = pd.DataFrame(np.c_[cancer['data'],<