电偶极子是两个相距较近的点电荷,设距离为
d
d
d, 电荷量分别为
+
q
+q
+q和
−
q
-q
−q.
求电场的一个方法是先求电势,然后求电势的梯度,即为电场。
设两电荷连线为三维坐标系的z轴,连线中点为原点O,
+
q
+q
+q所在一侧为z轴的正方向。建立好坐标系后,我们可以求任意一点P(x,y,z)的电势:
ϕ
(
x
,
y
,
z
)
=
1
4
π
ϵ
0
[
q
x
2
+
y
2
+
(
z
−
d
2
)
2
+
−
q
x
2
+
y
2
+
(
z
+
d
2
)
2
]
\phi_{(x,y,z)}=\frac{1}{4\pi\epsilon_0}[\frac{q}{\sqrt{x^2+y^2+(z-\frac{d}{2})^2}}+\frac{-q}{\sqrt{x^2+y^2+(z+\frac{d}{2})^2}}]
ϕ(x,y,z)=4πϵ01[x2+y2+(z−2d)2q+x2+y2+(z+2d)2−q]
(
z
±
d
2
)
2
=
z
2
(
1
±
d
2
z
)
2
(z\pm\frac{d}{2})^2=z^2(1\pm\frac{d}{2z})^2
(z±2d)2=z2(1±2zd)2
在电偶极子的研究场景中,
d
<
<
z
d<<z
d<<z, 则
z
2
(
1
±
d
2
z
)
2
≈
z
2
(
1
±
d
z
)
z^2(1\pm\frac{d}{2z})^2\approx z^2(1\pm\frac{d}{z})
z2(1±2zd)2≈z2(1±zd)
=
z
2
±
d
z
=z^2\pm dz
=z2±dz
则:
ϕ
(
x
,
y
,
z
)
=
q
4
π
ϵ
0
[
1
x
2
+
y
2
+
z
2
−
d
z
−
1
x
2
+
y
2
+
z
2
+
d
z
]
\phi_{(x,y,z)}=\frac{q}{4\pi\epsilon_0}[\frac{1}{\sqrt{x^2+y^2+z^2-dz}}-\frac{1}{\sqrt{x^2+y^2+z^2+dz}}]
ϕ(x,y,z)=4πϵ0q[x2+y2+z2−dz1−x2+y2+z2+dz1]
=
q
4
π
ϵ
0
[
1
r
2
−
d
z
−
1
r
2
+
d
z
]
=\frac{q}{4\pi\epsilon_0}[\frac{1}{\sqrt{r^2-dz}}-\frac{1}{\sqrt{r^2+dz}}]
=4πϵ0q[r2−dz1−r2+dz1]
(
r
2
±
d
z
)
−
1
2
=
1
r
(
1
±
d
z
r
2
)
−
1
2
(r^2\pm dz)^{-\frac{1}{2}}=\frac{1}{r}(1\pm\frac{dz}{r^2})^{-\frac{1}{2}}
(r2±dz)−21=r1(1±r2dz)−21
因为
d
<
<
r
,
z
<
<
r
d<<r,\ z<<r
d<<r, z<<r
则
1
r
(
1
±
d
z
r
2
)
−
1
2
≈
1
r
(
1
∓
d
z
2
r
2
)
\frac{1}{r}(1\pm\frac{dz}{r^2})^{-\frac{1}{2}}\approx\frac{1}{r}(1\mp\frac{dz}{2r^2})
r1(1±r2dz)−21≈r1(1∓2r2dz)
则
ϕ
(
x
,
y
,
z
)
=
q
4
π
ϵ
0
1
r
(
1
+
d
z
2
r
2
−
1
+
d
z
2
r
2
)
\phi_{(x,y,z)}=\frac{q}{4\pi\epsilon_0}\frac{1}{r}(1+\frac{dz}{2r^2}-1+\frac{dz}{2r^2})
ϕ(x,y,z)=4πϵ0qr1(1+2r2dz−1+2r2dz)
=
q
4
π
ϵ
0
d
z
r
3
=\frac{q}{4\pi\epsilon_0}\frac{dz}{r^3}
=4πϵ0qr3dz
通过求电势的陡度,来求电场:
E
x
=
−
∂
ϕ
∂
x
E_x=-\frac{\partial\phi}{\partial x}
Ex=−∂x∂ϕ
=
3
q
d
x
z
4
π
ϵ
0
r
5
=\frac{3qdxz}{4\pi\epsilon_0r^5}
=4πϵ0r53qdxz
E
y
=
−
∂
ϕ
∂
y
E_y=-\frac{\partial\phi}{\partial y}
Ey=−∂y∂ϕ
=
3
q
d
y
z
4
π
ϵ
0
r
5
=\frac{3qdyz}{4\pi\epsilon_0r^5}
=4πϵ0r53qdyz
E
z
=
−
∂
ϕ
∂
z
E_z=-\frac{\partial\phi}{\partial z}
Ez=−∂z∂ϕ
=
q
d
4
π
ϵ
0
(
3
z
2
r
5
−
1
r
3
)
=\frac{qd}{4\pi\epsilon_0}(\frac{3z^2}{r^5}-\frac{1}{r^3})
=4πϵ0qd(r53z2−r31)
电偶极子的电场
最新推荐文章于 2025-02-25 14:41:11 发布