电偶极子的场

电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。在距离远超于两个点电荷相隔距离之处,物理电偶极子所产生的电场,可以近似为其电偶极矩所产生的电场。令物理电偶极子的两个点电荷相隔距离趋向于 0 ,同时保持其电偶极矩不变,则极限就是点电偶极子,又称为纯电偶极子(定义参考wiki)。
请添加图片描述
上图表示等量正负电荷的电偶极子的几何形状,间隔距离 d l \mathrm{d}l dl。当 d l \mathrm{d}l dl趋于零时,乘积 q ⋅ d l q\cdot\mathrm{d}l qdl仍然是有限的。
如前所述,假设有两个基本电荷大小相等,但符号不同。根据点电荷的电势表达式,可以得到在观察点 p p p处两个点电荷电势叠加的结果如下:
U ( p ) = e 4 π ε 0 ( 1 L q 2 p − 1 L q 1 p ) \begin{equation} \begin{aligned} U(p)=\dfrac{e}{4\pi\varepsilon_0}\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right) \end{aligned} \end{equation} U(p)=4πε0e(Lq2p1Lq1p1)其中, q 1 , q 2 q_1,q_2 q1,q2代表点电荷的空间位置。我们将只在大大超过电荷间分离 d l \mathrm{d}l dl的距离处考虑该场,即:
d l ≪ L q p \begin{equation} \begin{aligned} \mathrm{d}l\ll L_{qp} \end{aligned} \end{equation} dlLqp其中#q#表示两个异号点电荷的中点位置。考虑函数 f = 1 L q p f=\dfrac{1}{L_{qp}} f=Lqp1,则 ( 1 L q 2 p − 1 L q 1 p ) \left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right) (Lq2p1Lq1p1)可以表示为函数 f f f q 2 , q 1 q_2,q_1 q2,q1两点的函数值之差,当 d l \mathrm{d}l dl趋近于无穷小时,该函数差则转变为函数在 q 1 q 2 q_1q_2 q1q2方向上的方向导数,即点 q 1 q_1 q1 q 2 q_2 q2之间的函数 f f f的变化非常小:
1 L q 2 p − 1 L q 1 p = d l ∂ ∂ l 1 L q p \begin{equation} \begin{aligned} \dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}=\mathrm{d}l\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}} \end{aligned} \end{equation} Lq2p1Lq1p1=dllLqp1其中, ( ∂ / ∂ l ) ( 1 / L q p ) (\partial/\partial l)(1/L_{qp}) (/l)(1/Lqp)是沿连接两个电荷的线的方向导数,根据梯度的定义,我们可以得到:
U ( p ) = e d l 4 π ε 0 ∂ ∂ l 1 L q p = e 4 π ε 0 d l ⋅ g r a d q 1 L q p \begin{equation} U(p)=\dfrac{e\mathrm{d}l}{4\pi\varepsilon_0}\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}}=\dfrac{e}{4\pi\varepsilon_0}\mathrm{d}\mathbf{l}\cdot \stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}} \end{equation} U(p)=4πε0edllLqp1=4πε0edlgradqLqp1再根据导数计算公式 g r a d q 1 L q p = L q p L q p 3 \stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}}=\dfrac{\mathbf{L}_{qp}}{L^3_{qp}} gradqLqp1=Lqp3Lqp,进而可得:
U ( p ) = 1 4 π ε 0 p ⋅ L q p L q p 3 p = e d l \begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{\mathbf{p}\cdot\mathbf{L}_{qp}}{L^3_{qp}} \\\mathbf{p}=e\mathrm{d}\mathbf{l} \end{aligned} \end{equation} U(p)=4πε01Lqp3pLqpp=edl其中 p \mathbf{p} p被称为电偶极子的力矩。这个矢量表示正电荷相对于负电荷的位移方向,其大小等于正电荷与它们之间的距离的乘积,矢量 p \mathbf{p} p是描述电偶极子的参数。在距离电荷相对较大的距离时有
U ( p ) = 1 4 π ε 0 p cos ⁡ θ L q p 2 \begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{p\cos\theta}{L^2_{qp}} \end{aligned} \end{equation} U(p)=4πε01Lqp2pcosθ这里的 θ \theta θ 是矢量 p \mathbf{p} p和半径矢量从偶极子中心到一个观测点之间的夹角,在球坐标系有:
E = − g r a d U E R = − ∂ U ∂ R , E θ = 1 R ∂ U ∂ θ , E ϕ = − 1 R sin ⁡ θ ∂ U ∂ ϕ E R = 2 p cos ⁡ θ 4 π R 3 , E θ = p sin ⁡ θ 4 π R 3 , E ϕ = 0 \begin{equation} \begin{aligned} \mathbf{E}&=-\mathrm{grad} U \\E_R=-\dfrac{\partial U}{\partial R},\quad E_\theta&=\dfrac{1}{R}\dfrac{\partial U}{\partial\theta}, \quad E_\phi=-\dfrac{1}{R\sin\theta}\dfrac{\partial U}{\partial \phi} \\E_R=\dfrac{2p\cos\theta}{4\pi R^3},\quad E_\theta&=\dfrac{p\sin\theta}{4\pi R^3},\quad E_\phi=0 \end{aligned} \end{equation} EER=RU,EθER=4πR32pcosθ,Eθ=gradU=R1θU,Eϕ=Rsinθ1ϕU=4πR3psinθ,Eϕ=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值