电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。在距离远超于两个点电荷相隔距离之处,物理电偶极子所产生的电场,可以近似为其电偶极矩所产生的电场。令物理电偶极子的两个点电荷相隔距离趋向于 0 ,同时保持其电偶极矩不变,则极限就是点电偶极子,又称为纯电偶极子(定义参考wiki)。
上图表示等量正负电荷的电偶极子的几何形状,间隔距离dl\mathrm{d}ldl。当dl\mathrm{d}ldl趋于零时,乘积q⋅dlq\cdot\mathrm{d}lq⋅dl仍然是有限的。
如前所述,假设有两个基本电荷大小相等,但符号不同。根据点电荷的电势表达式,可以得到在观察点ppp处两个点电荷电势叠加的结果如下:
U(p)=e4πε0(1Lq2p−1Lq1p)\begin{equation}
\begin{aligned}
U(p)=\dfrac{e}{4\pi\varepsilon_0}\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right)
\end{aligned}
\end{equation}U(p)=4πε0e(Lq2p1−Lq1p1)其中,q1,q2q_1,q_2q1,q2代表点电荷的空间位置。我们将只在大大超过电荷间分离dl\mathrm{d}ldl的距离处考虑该场,即:
dl≪Lqp\begin{equation}
\begin{aligned}
\mathrm{d}l\ll L_{qp}
\end{aligned}
\end{equation}dl≪Lqp其中#q#表示两个异号点电荷的中点位置。考虑函数f=1Lqpf=\dfrac{1}{L_{qp}}f=Lqp1,则(1Lq2p−1Lq1p)\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right)(Lq2p1−Lq1p1)可以表示为函数fff在q2,q1q_2,q_1q2,q1两点的函数值之差,当dl\mathrm{d}ldl趋近于无穷小时,该函数差则转变为函数在q1q2q_1q_2q1q2方向上的方向导数,即点q1q_1q1和q2q_2q2之间的函数fff的变化非常小:
1Lq2p−1Lq1p=dl∂∂l1Lqp\begin{equation}
\begin{aligned}
\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}=\mathrm{d}l\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}}
\end{aligned}
\end{equation}Lq2p1−Lq1p1=dl∂l∂Lqp1其中,(∂/∂l)(1/Lqp)(\partial/\partial l)(1/L_{qp})(∂/∂l)(1/Lqp)是沿连接两个电荷的线的方向导数,根据梯度的定义,我们可以得到:
U(p)=edl4πε0∂∂l1Lqp=e4πε0dl⋅gradq1Lqp\begin{equation}
U(p)=\dfrac{e\mathrm{d}l}{4\pi\varepsilon_0}\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}}=\dfrac{e}{4\pi\varepsilon_0}\mathrm{d}\mathbf{l}\cdot \stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}}
\end{equation}U(p)=4πε0edl∂l∂Lqp1=4πε0edl⋅gradqLqp1再根据导数计算公式gradq1Lqp=LqpLqp3\stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}}=\dfrac{\mathbf{L}_{qp}}{L^3_{qp}}gradqLqp1=Lqp3Lqp,进而可得:
U(p)=14πε0p⋅LqpLqp3p=edl\begin{equation}
\begin{aligned}
U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{\mathbf{p}\cdot\mathbf{L}_{qp}}{L^3_{qp}}
\\\mathbf{p}=e\mathrm{d}\mathbf{l}
\end{aligned}
\end{equation}U(p)=4πε01Lqp3p⋅Lqpp=edl其中p\mathbf{p}p被称为电偶极子的力矩。这个矢量表示正电荷相对于负电荷的位移方向,其大小等于正电荷与它们之间的距离的乘积,矢量p\mathbf{p}p是描述电偶极子的参数。在距离电荷相对较大的距离时有
U(p)=14πε0pcosθLqp2\begin{equation}
\begin{aligned}
U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{p\cos\theta}{L^2_{qp}}
\end{aligned}
\end{equation}U(p)=4πε01Lqp2pcosθ这里的 θ\thetaθ 是矢量p\mathbf{p}p和半径矢量从偶极子中心到一个观测点之间的夹角,在球坐标系有:
E=−gradUER=−∂U∂R,Eθ=1R∂U∂θ,Eϕ=−1Rsinθ∂U∂ϕER=2pcosθ4πR3,Eθ=psinθ4πR3,Eϕ=0\begin{equation}
\begin{aligned}
\mathbf{E}&=-\mathrm{grad} U
\\E_R=-\dfrac{\partial U}{\partial R},\quad E_\theta&=\dfrac{1}{R}\dfrac{\partial U}{\partial\theta}, \quad E_\phi=-\dfrac{1}{R\sin\theta}\dfrac{\partial U}{\partial \phi}
\\E_R=\dfrac{2p\cos\theta}{4\pi R^3},\quad E_\theta&=\dfrac{p\sin\theta}{4\pi R^3},\quad E_\phi=0
\end{aligned}
\end{equation}EER=−∂R∂U,EθER=4πR32pcosθ,Eθ=−gradU=R1∂θ∂U,Eϕ=−Rsinθ1∂ϕ∂U=4πR3psinθ,Eϕ=0
电偶极子的场

最新推荐文章于 2025-03-04 10:55:23 发布
