电偶极子的场

电偶极子电场电势的理论推导
博客介绍了电偶极子的定义,包括物理电偶极子和点电偶极子。基于点电荷的电势表达式,推导了在观察点处两个点电荷电势叠加的结果。通过函数变化、方向导数、梯度等知识,得出电偶极子电势和电场在不同条件下的表达式。

电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。在距离远超于两个点电荷相隔距离之处,物理电偶极子所产生的电场,可以近似为其电偶极矩所产生的电场。令物理电偶极子的两个点电荷相隔距离趋向于 0 ,同时保持其电偶极矩不变,则极限就是点电偶极子,又称为纯电偶极子(定义参考wiki)。
请添加图片描述
上图表示等量正负电荷的电偶极子的几何形状,间隔距离dl\mathrm{d}ldl。当dl\mathrm{d}ldl趋于零时,乘积q⋅dlq\cdot\mathrm{d}lqdl仍然是有限的。
如前所述,假设有两个基本电荷大小相等,但符号不同。根据点电荷的电势表达式,可以得到在观察点ppp处两个点电荷电势叠加的结果如下:
U(p)=e4πε0(1Lq2p−1Lq1p)\begin{equation} \begin{aligned} U(p)=\dfrac{e}{4\pi\varepsilon_0}\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right) \end{aligned} \end{equation}U(p)=4πε0e(Lq2p1Lq1p1)其中,q1,q2q_1,q_2q1,q2代表点电荷的空间位置。我们将只在大大超过电荷间分离dl\mathrm{d}ldl的距离处考虑该场,即:
dl≪Lqp\begin{equation} \begin{aligned} \mathrm{d}l\ll L_{qp} \end{aligned} \end{equation}dlLqp其中#q#表示两个异号点电荷的中点位置。考虑函数f=1Lqpf=\dfrac{1}{L_{qp}}f=Lqp1,则(1Lq2p−1Lq1p)\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right)(Lq2p1Lq1p1)可以表示为函数fffq2,q1q_2,q_1q2,q1两点的函数值之差,当dl\mathrm{d}ldl趋近于无穷小时,该函数差则转变为函数在q1q2q_1q_2q1q2方向上的方向导数,即点q1q_1q1q2q_2q2之间的函数fff的变化非常小:
1Lq2p−1Lq1p=dl∂∂l1Lqp\begin{equation} \begin{aligned} \dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}=\mathrm{d}l\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}} \end{aligned} \end{equation}Lq2p1Lq1p1=dllLqp1其中,(∂/∂l)(1/Lqp)(\partial/\partial l)(1/L_{qp})(/l)(1/Lqp)是沿连接两个电荷的线的方向导数,根据梯度的定义,我们可以得到:
U(p)=edl4πε0∂∂l1Lqp=e4πε0dl⋅gradq1Lqp\begin{equation} U(p)=\dfrac{e\mathrm{d}l}{4\pi\varepsilon_0}\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}}=\dfrac{e}{4\pi\varepsilon_0}\mathrm{d}\mathbf{l}\cdot \stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}} \end{equation}U(p)=4πε0edllLqp1=4πε0edlgradqLqp1再根据导数计算公式gradq1Lqp=LqpLqp3\stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}}=\dfrac{\mathbf{L}_{qp}}{L^3_{qp}}gradqLqp1=Lqp3Lqp,进而可得:
U(p)=14πε0p⋅LqpLqp3p=edl\begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{\mathbf{p}\cdot\mathbf{L}_{qp}}{L^3_{qp}} \\\mathbf{p}=e\mathrm{d}\mathbf{l} \end{aligned} \end{equation}U(p)=4πε01Lqp3pLqpp=edl其中p\mathbf{p}p被称为电偶极子的力矩。这个矢量表示正电荷相对于负电荷的位移方向,其大小等于正电荷与它们之间的距离的乘积,矢量p\mathbf{p}p是描述电偶极子的参数。在距离电荷相对较大的距离时有
U(p)=14πε0pcos⁡θLqp2\begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{p\cos\theta}{L^2_{qp}} \end{aligned} \end{equation}U(p)=4πε01Lqp2pcosθ这里的 θ\thetaθ 是矢量p\mathbf{p}p和半径矢量从偶极子中心到一个观测点之间的夹角,在球坐标系有:
E=−gradUER=−∂U∂R,Eθ=1R∂U∂θ,Eϕ=−1Rsin⁡θ∂U∂ϕER=2pcos⁡θ4πR3,Eθ=psin⁡θ4πR3,Eϕ=0\begin{equation} \begin{aligned} \mathbf{E}&=-\mathrm{grad} U \\E_R=-\dfrac{\partial U}{\partial R},\quad E_\theta&=\dfrac{1}{R}\dfrac{\partial U}{\partial\theta}, \quad E_\phi=-\dfrac{1}{R\sin\theta}\dfrac{\partial U}{\partial \phi} \\E_R=\dfrac{2p\cos\theta}{4\pi R^3},\quad E_\theta&=\dfrac{p\sin\theta}{4\pi R^3},\quad E_\phi=0 \end{aligned} \end{equation}EER=RU,EθER=4πR32pcosθ,Eθ=gradU=R1θU,Eϕ=Rsinθ1ϕU=4πR3psinθ,Eϕ=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值