电偶极子是两个分隔一段距离,电量相等,正负相反的电荷。在距离远超于两个点电荷相隔距离之处,物理电偶极子所产生的电场,可以近似为其电偶极矩所产生的电场。令物理电偶极子的两个点电荷相隔距离趋向于 0 ,同时保持其电偶极矩不变,则极限就是点电偶极子,又称为纯电偶极子(定义参考wiki)。
上图表示等量正负电荷的电偶极子的几何形状,间隔距离
d
l
\mathrm{d}l
dl。当
d
l
\mathrm{d}l
dl趋于零时,乘积
q
⋅
d
l
q\cdot\mathrm{d}l
q⋅dl仍然是有限的。
如前所述,假设有两个基本电荷大小相等,但符号不同。根据点电荷的电势表达式,可以得到在观察点
p
p
p处两个点电荷电势叠加的结果如下:
U
(
p
)
=
e
4
π
ε
0
(
1
L
q
2
p
−
1
L
q
1
p
)
\begin{equation} \begin{aligned} U(p)=\dfrac{e}{4\pi\varepsilon_0}\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right) \end{aligned} \end{equation}
U(p)=4πε0e(Lq2p1−Lq1p1)其中,
q
1
,
q
2
q_1,q_2
q1,q2代表点电荷的空间位置。我们将只在大大超过电荷间分离
d
l
\mathrm{d}l
dl的距离处考虑该场,即:
d
l
≪
L
q
p
\begin{equation} \begin{aligned} \mathrm{d}l\ll L_{qp} \end{aligned} \end{equation}
dl≪Lqp其中#q#表示两个异号点电荷的中点位置。考虑函数
f
=
1
L
q
p
f=\dfrac{1}{L_{qp}}
f=Lqp1,则
(
1
L
q
2
p
−
1
L
q
1
p
)
\left(\dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}\right)
(Lq2p1−Lq1p1)可以表示为函数
f
f
f在
q
2
,
q
1
q_2,q_1
q2,q1两点的函数值之差,当
d
l
\mathrm{d}l
dl趋近于无穷小时,该函数差则转变为函数在
q
1
q
2
q_1q_2
q1q2方向上的方向导数,即点
q
1
q_1
q1和
q
2
q_2
q2之间的函数
f
f
f的变化非常小:
1
L
q
2
p
−
1
L
q
1
p
=
d
l
∂
∂
l
1
L
q
p
\begin{equation} \begin{aligned} \dfrac{1}{L_{q_2p}}-\dfrac{1}{L_{q_1p}}=\mathrm{d}l\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}} \end{aligned} \end{equation}
Lq2p1−Lq1p1=dl∂l∂Lqp1其中,
(
∂
/
∂
l
)
(
1
/
L
q
p
)
(\partial/\partial l)(1/L_{qp})
(∂/∂l)(1/Lqp)是沿连接两个电荷的线的方向导数,根据梯度的定义,我们可以得到:
U
(
p
)
=
e
d
l
4
π
ε
0
∂
∂
l
1
L
q
p
=
e
4
π
ε
0
d
l
⋅
g
r
a
d
q
1
L
q
p
\begin{equation} U(p)=\dfrac{e\mathrm{d}l}{4\pi\varepsilon_0}\dfrac{\partial}{\partial l}\dfrac{1}{L_{qp}}=\dfrac{e}{4\pi\varepsilon_0}\mathrm{d}\mathbf{l}\cdot \stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}} \end{equation}
U(p)=4πε0edl∂l∂Lqp1=4πε0edl⋅gradqLqp1再根据导数计算公式
g
r
a
d
q
1
L
q
p
=
L
q
p
L
q
p
3
\stackrel{q}{\mathrm{grad}}\dfrac{1}{L_{qp}}=\dfrac{\mathbf{L}_{qp}}{L^3_{qp}}
gradqLqp1=Lqp3Lqp,进而可得:
U
(
p
)
=
1
4
π
ε
0
p
⋅
L
q
p
L
q
p
3
p
=
e
d
l
\begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{\mathbf{p}\cdot\mathbf{L}_{qp}}{L^3_{qp}} \\\mathbf{p}=e\mathrm{d}\mathbf{l} \end{aligned} \end{equation}
U(p)=4πε01Lqp3p⋅Lqpp=edl其中
p
\mathbf{p}
p被称为电偶极子的力矩。这个矢量表示正电荷相对于负电荷的位移方向,其大小等于正电荷与它们之间的距离的乘积,矢量
p
\mathbf{p}
p是描述电偶极子的参数。在距离电荷相对较大的距离时有
U
(
p
)
=
1
4
π
ε
0
p
cos
θ
L
q
p
2
\begin{equation} \begin{aligned} U(p)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{p\cos\theta}{L^2_{qp}} \end{aligned} \end{equation}
U(p)=4πε01Lqp2pcosθ这里的
θ
\theta
θ 是矢量
p
\mathbf{p}
p和半径矢量从偶极子中心到一个观测点之间的夹角,在球坐标系有:
E
=
−
g
r
a
d
U
E
R
=
−
∂
U
∂
R
,
E
θ
=
1
R
∂
U
∂
θ
,
E
ϕ
=
−
1
R
sin
θ
∂
U
∂
ϕ
E
R
=
2
p
cos
θ
4
π
R
3
,
E
θ
=
p
sin
θ
4
π
R
3
,
E
ϕ
=
0
\begin{equation} \begin{aligned} \mathbf{E}&=-\mathrm{grad} U \\E_R=-\dfrac{\partial U}{\partial R},\quad E_\theta&=\dfrac{1}{R}\dfrac{\partial U}{\partial\theta}, \quad E_\phi=-\dfrac{1}{R\sin\theta}\dfrac{\partial U}{\partial \phi} \\E_R=\dfrac{2p\cos\theta}{4\pi R^3},\quad E_\theta&=\dfrac{p\sin\theta}{4\pi R^3},\quad E_\phi=0 \end{aligned} \end{equation}
EER=−∂R∂U,EθER=4πR32pcosθ,Eθ=−gradU=R1∂θ∂U,Eϕ=−Rsinθ1∂ϕ∂U=4πR3psinθ,Eϕ=0
电偶极子的场
最新推荐文章于 2025-03-04 10:55:23 发布